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Foreward

Joshua Lederberg

Historically rich in novel, subtle, often controversial ideas, Molecular Bi-
ology has lately become heir to a huge legacy of standardized data in the
form of polynucleotide and polypeptide sequences. Fred Sanger received
two, well deserved Nobel Prizes for his seminal role in developing the basic
technology needed for this reduction of core biological information to one
linear dimension. With the explosion of recorded information, biochemists
for the first time found it necessary to familiarize themselves with databases
and the algorithms needed to extract the correlations of records, and in turn
have put these to good use in the exploration of phylogenetic relationships,
and in the applied tasks of hunting genes and their often valuable products.
The formalization of this research challenge in the Human Genome Project
has generated a new impetus in datasets to be analyzed and the funds to sup-
port that research.

There are, then, good reasons why the management of DNA sequence
databases has been the main attractive force to computer science relating to
molecular biology. Beyond the pragmatic virtues of access to enormous data,
the sequences present few complications of representation; and the knowl-
edge-acquisition task requires hardly more than the enforcement of agreed
standards of deposit of sequence information in centralized, network-linked
archives.

The cell's interpretation of sequences is embedded in a far more intricate
context than string-matching. It must be conceded that the rules of base-com-
plementarity in the canonical DNA double-helix, and the matching of codons
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to the amino acid sequence of the protein, are far more digital in their flavor
than anyone could have fantasized 50 years ago (at the dawn of both molecu-
lar biology and modern computer science.) There is far more intricate knowl-
edge to be acquired, and the representations will be more problematic, when
we contemplate the pathways by which a nucleotide change can perturb the
shape of organic development or the song of a bird.

The current volume is an effort to bridge just that range of exploration,
from nucleotide to abstract concept, in contemporary Al/MB research. That
bridge must also join computer scientists with laboratory biochemists—my
afterword outlines some of the hazards of taking biologists’s last word as the
settled truth, and therefore the imperative of mutual understanding about
how imputed knowledge will be used. A variety of target problems, andper-
haps a hand-crafted representation for each, is embraced in the roster. There
is obvious detriment to premature standardization; but it is daunting to see
the difficulties of merging the hardwon insights, the cumulative world
knowledge, that comes from each of these efforts. The symposium had also
included some discussion of Al for bibliographic retrieval, an interface we
must learn how to cultivate if we are ever to access where most of that
knowledge is now deposited, namely the published literature. Those papers
were, however, unavailable for the printed publication.

It ends up being easy to sympathize with the majority of MB computer
scientists who have concentrated on the published sequence data. Many are
even willing to rely on neural-network approaches that ignore, may even de-
feat, insights into causal relationships. But it will not be too long before the
complete sequences of a variety of organisms, eventually the human too, will
be in our hands; and then we will have to face up to making real sense of
them in the context of a broader frame of biological facts and theory. This
book will be recalled as a pivotal beginning of that enterprise as an issue for
collective focus and mutual inspiration.



CHAPTER

1

Molecular Biology for
Computer Scientists

Lawrence Hunter

“Computers are to biology what mathematics is to physics.”

— Harold Morowitz

One of the major challenges for computer scientists who wish to work in the
domain of molecular biology is becoming conversant with the daunting intri-
cacies of existing biological knowledge and its extensive technical vocabu-
lary. Questions about the origin, function, and structure of living systems
have been pursued by nearly all cultures throughout history, and the work of
the last two generations has been particularly fruitful. The knowledge of liv-
ing systems resulting from this research is far too detailed and complex for
any one human to comprehend. An entire scientific career can be based in the
study of a single biomolecule. Nevertheless, in the following pages, | attempt
to provide enough background for a computer scientist to understand much
of the biology discussed in this book. This chapter provides the briefest of
overviews; | can only begin to convey the depth, variety, complexity and
stunning beauty of the universe of living things.

Much of what follows is not aboumolecularbiology per se. In order to
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explain what the molecules are doing, it is often necessary to use concepts
involving, for example, cells, embryological development, or evolution. Bi-
ology is frustratingly holistic. Events at one level can effect and be affected
by events at very different levels of scale or time. Digesting a survey of the
basic background material is a prerequisite for understanding the significance
of the molecular biology that is described elsewhere in the book. In life, as in
cognition, context is very important.

Do keep one rule in the back of your mind as you read this: for every gen-
eralization | make about biology, there may well be thousands of exceptions.
There are a lot of living things in the world, and precious few generalizations
hold true for all of them. | will try to cover the principles; try to keep the ex-
istence of exceptions in mind as you read. Another thing to remember is that
an important part of understanding biology is learning its language. Biolo-
gists, like many scientists, use technical terms in order to be precise about
reference. Getting a grasp on this terminology makes a great deal of the bio-
logical literature accessible to the non-specialist. The notes contain informa-
tion about terminology and other basic matters. With that, let's begin at the
beginning.

1. What Is Life?

No simple definition of what it is to be a living thing captures our intuitions
about what is alive and what is not. The central feature of life is its ability to
reproduce itself. Reproductive ability alone is not enough; computer pro-
grams can create endless copies of themselves—that does not make them
alive. Crystals influence the matter around them to create structures similar
to themselves but they’re not alive, either. Most living things take in materi-
als from their environment and capture forms of energy they can use to trans-
form those materials into components of themselves or their offspring. Virus-
es, however, do not do that; they are nearly pure genetic material, wrapped in
a protective coating. The cell that a virus infects does all the synthetic work
involved in creating new viruses. Are viruses a form of life? Many people
would say so.

Another approach to defining “life” is to recognize its fundamental inter-
relatedness. All living things are related to each other. Any pair of organisms,
no matter how different, have a common ancestor sometime in the distant
past. Organisms came to differ from each other, and to reach modern levels
of complexity throughevolution.Evolution has three components: inheri-
tance, the passing of characteristics from parents to offspring; variation, the
processes that make offspring other than exact copies of their parents; and
selection, the process that differentially favors the reproduction of some or-
ganisms, and hence their characteristics, over others. These three factors
define an evolutionary process. Perhaps the best definition of life is that it is
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the result of the evolutionary process taking place on Earth. Evolution is the
key not only to defining what counts as life but also to understanding how
living systems function.

Evolution is a cumulative procesmheritanceis the determinant of al-
most all of the structure and function of organisms; the amount of variation
from one generation to the next is quite small. Some aspects of organisms,
such as the molecules that carry energy or genetic information, have changed
very little since that original common ancestor several billion of years ago.
Inheritance alone, however, is not sufficient for evolution to occur; perfect
inheritance would lead to populations of entirely identical organisms, all ex-
actly like the first one.

In order to evolve, there must be a sourceasfation in the inheritance.

In biology, there are several sources of variation. Mutation, or random
changes in inherited material, is only one source of change; sexual recombi-
nation and various other kinds of genetic rearrangements also lead to varia-
tions; even viruses can get into the act, leaving a permanent trace in the
genes of their hosts. All of these sources of variation modify the message
that is passed from parent to offspring; in effect, exploring a very large space
of possible characteristics. It is an evolutionary truism that almost all varia-
tions are neutral or deleterious. As computer programmers well know, small
changes in a complex system often lead to far-reaching and destructive con-
sequences (And computer programmers make those small changes by design,
and with the hope of improving the code!). However, given enough time, the
search of that space has produced many viable organisms.

Living things have managed to adapt to a breathtaking array of chal-
lenges, and continue to thrivBelectionis the process by which it is deter-
mined which variants will persist, and therefore also which parts of the space
of possible variations will be explored. Natural selection is based on the re-
productive fitness of each individual. Reproductive fithess is a measure of
how many surviving offspring an organism can produce; the better adapted
an organism is to its environment, the more successful offspring it will cre-
ate. Because of competition for limited resources, only organisms with high
fitness will survive; organisms less well adapted to their environment than
competing organisms will simply die out.

I have likened evolution to a search through a very large space of possible
organism characteristics. That space can be defined quite precisely. All of an
organism’s inherited characteristics are contained in a single messenger mol-
ecule: deoxyribonucleic acid, or DNA. The characteristics are represented in
a simple, linear, four-element code. The translation of this code into all the
inherited characteristics of an organism (e.g. its body plan, or the wiring of
its nervous system) is complex. The particular genetic encoding for an organ-
ism is called itggenotype The resulting physical characteristics of an organ-
ism is called itgphenotypeln the search space metaphor, every point in the
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space is a genotype. Evolutionary variation (such as mutation, sexual recom-
bination and genetic rearrangements) identifies the legal moves in this space.
Selection is an evaluation function that determines how many other points a
point can generate, and how long each point persists. The difference between
genotype and phenotype is important because allowable (i.e. small) steps in
genotype space can have large consequences in phenotype space. It is also
worth noting that search happens in genotype space, but selection occurs on
phenotypes. Although it is hard to characterize the size of phenotype space,
an organism with a large amount of genetic material (like, e.g., that of the
flower Lily) has about 1t elements taken from a four letter alphabet, mean-
ing that there are roughly 16000,000,00@0ssible genotypes of that size or
less. A vast space indeed! Moves (reproductive events) occur asynchronous-
ly, both with each other and with the selection process. There are many non-
deterministic elements; for example, in which of many possible moves is
taken, or in the application of the selection function. Imagine this search
process running for billions of iterations, examining trillions of points in this
space in parallel at each iteration. Perhaps it is not such a surprise that evolu-
tion is responsible for the wondrous abilities of living things, and for their
tremendous diversity.

1.1 The Unity and the Diversity of Living Things

Life is extraordinarily varied. The differences between a tiny archebacterium
living in a superheated sulphur vent at the bottom of the ocean and a two-ton
polar bear roaming the arctic circle span orders of magnitude in many dimen-
sions. Many organisms consist of a single cell; a Sperm Whale has more than
1015 cells. Although very acidic, very alkaline or very salty environments are
generally deadly, living things can be found in all of them. Hot or cold, wet or
dry, oxygen-rich or anaerobic, nearly every niche on the planet has been in-
vaded by life. The diversity of approaches to gathering nutrients, detecting
danger, moving around, finding mates (or other forms of reproduction), rais-
ing offspring and dozens of other activities of living creatures is truly awe-
some. Although our understanding of the molecular level of life is less de-
tailed, it appears that this diversity is echoed there. For example, proteins with
very similar shapes and identical functions can have radically different chemi-
cal compositions. And organisms that look quite similar to each other may
have very different genetic blueprints. All of the genetic material in an organ-
ism is called itgenomeGenetic material is discrete and hence has a particular
size, although the size of the genome is not directly related to the complexity
of the organism. The size of genomes varies from about 5,000 elements in a
very simple organism (e.g. the viruses SV4@Jrto more than 18 elements

*Evolution has also become an inspiration to a group of researchers interested in de-
signing computer algorithms, e.g. Langton (1989).
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in some higher plants; people have about $xdéments in their genome.

Despite this incredible diversity, nearly all of the same basic mechanisms
are present in all organisms. All living things are made of ‘cetiembrane-
enclosed sacks of chemicals carrying out finely tuned sequences of reactions.
The thousand or so substances that make up the basic reactions going on in-
side the cell (the commetabolic pathwaysare remarkably similar across all
living things. Every species has some variations, but the same basic materials
are found from bacteria to human. The genetic material that codes for all of
these substances is written in more or less the same molecular language in
every organism. The developmental pathways for nearly all multicellular or-
ganisms unfold in very similar ways. It is this underlying unity that offers the
hope of developing predictive models of biological activity. It is the process
of evolution that is responsible both for the diversity of living things and for
their underlying similarities. The unity arises through inheritance from com-
mon ancestors; the diversity from the power of variation and selection to
search a vast space of possible living forms.

1.2 Prokaryotes & Eukaryotes, Yeasts & People

Non-biologists often fail to appreciate the tremendous number of different
kinds of organisms in the world. Although no one really knows, estimates of
the number of currently extant species range from 5 million to 50 million
(May, 1988)! There are at least 300,000 different kinds of beetles alone, and
probably 50,000 species of tropical trees. Familiar kinds of plants and ani-
mals make up a relatively small proportion of the kinds of living things, per-
haps only 20%. Vertebrates (animals with backbones: fish, reptiles, amphib-
ians, birds, mammals) make up only about 3% of the species in the world.

Since Aristotle, scholars have tried to group these myriad species into
meaningful classes. This pursuit remains active, and the classifications are, to
some degree, still controversial. Traditionally, these classifications have been
based on thenorphologyof organisms. Literally, morphology means shape,
but it is generally taken to include internal structure as well. Morhpology is
only part of phenotype, however; other parts include physiology, or the func-
tioning of living structures, and development. Structure, development and
function all influence each other, so the dividing lines are not entirely clear.

In recent years, these traditional taxonomies have been shaken by infor-
mation gained from analyzing genes directly, as well as by the discovery of
an entirely new class of organisms that live in hot, sulphurous environments
in the deep sea.

*A virus is arguably alive, and is not a cell, but it depends on infecting a cell in order
to reproduce.

tMay also notes that it is possible that half the extant species on the planet may be-
come extinct in the next 50 to 100 years.
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All Life
Viruses Archaea Bacteria Eucarya
Protists Fungi Green Plants Animals
(yeast, planaria) (Mushrooms, AW
Invertebrates Vertebrates

(insects, worms, shellfish, snails)

Fish Reptiles Amphibians Birds
(sharks, trout) (snakes, lizards) (frogs, newts) (eagles, finches) Mammals

Monotremata Marsupials Leptictida Rodents Carnivores Pinnipedia Pteropidae Primates
(platypi) (kangaroos) (rabbits) (mice) (wolves) (seals) (bats) (people)

Figure 1. A very incomplete and informal taxonomic tree. Items in italics are com-
mon names of representative organisms or classes. Most of the elided taxa are Bac-
teria; Vertebrates make up only about 3% of known species.

Here | will follow Woese, Kandler & Wheelis (1990), although some as-
pects of their taxonomy are controversial. They developed their classification
of organisms by using distances based on sequence divergence in a ubiqui-
tous piece of genetic sequence As shown in Figure 1, there are three most
basic divisions: the Archaea, the Bacteria and the Eucarya. Eucarya (also
called eucaryotes) are the creatures we are most familiar with. They have
cells that contain nuclei, a specialized area in the cell that holds the genetic
material. Eucaryotic cells also have other specialized cellular areas, called
organelles. An example of organelles are mitochondria and chloroplasts. Mi-
tochondria are where respiration takes place, the process by which cells use
oxygen to improve their efficiency at turning food into useful energy.
Chloroplasts are organelles found in plants that capture energy from sunlight.
All multicellular organisms, (e.g. people, mosquitos and maple trees) are Eu-
carya, as are many single celled organisms, such as yeasts and paramecia.

Even within Eucarya, there are more kinds of creatures than many non-bi-
ologists expect. Within the domain of the eucaryotes, there are generally held
to be at least four kingdoms: animals, green plants, fungi and protists. From a
genetic viewpoint, the protists, usually defined as single celled organisms
other than fungi, appear to be a series of kingdoms, including at least the cili-
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ates (cells with many external hairs, or cillia), the flagellates (cells with a sin-
gle, long external fiber) and the microsporidia. The taxonomic tree continues
down about a dozen levels, ending with particular species at the leaves. All
of these many eucaryotic life forms have a great deal in common with human
beings, which is the reason we can learn so much about ourselves by study-
ing them.

Bacteria (sometimes also called eubacteria, or prokaryotes) are ubiquitous
single-celled organisms. And ubiquitous is the word; there are millions of
them everywhere — on this page, in the air you are breathing, and in your
gut, for example. The membranes that enclose these cells are typically made
of a different kind of material than the ones that surround eucarya, and they
have no nuclei or other organelles (they do have ribosomes, which are some-
times considered organelles; see below). Almost all bacteria do is to make
more bacteria; it appears that when food is abundant, the survival of the
fittest in bacteria means the survival of those that can divide the fastest (Al-
berts, et al., 1989). Bacteria include not only the disease causing “germs,”
but many kinds of algae, and a wide variety of symbiotic organisms, includ-
ing soil bacteria that fix nitrogen for plants and Escherichia coli, a bacterium
that lives in human intestines and is required for normal digestion. E. coli is
ubiquitous in laboratories because it is easy to grow and very well studied.

Archaea are a recently discovered class of organism so completely unlike
both bacteria and eucarya, both genetically and morphologically, that they
have upset a decades old dichotomy. Archaea live in superheated sulphur
vents in the deep sea, or in hot acid springs, briney bogs and other seemingly
inhospitable places. They are sometimes callethebacteriaeven though
they bear little resemblence to bacteria. Their cell membranes are unlike ei-
ther Bacteria or Eucarya. Although they have no nuclei or organelles, at a ge-
netic level, they are a bit more like Eucarya than like Bacteria. These organ-
isms are a relatively recent discovery, and any biological theories have yet to
include Archaea, or consider them simply another kind of procaryote. Ar-
chaea will probably have a significant effect on theories about the early his-
tory of life, and their unusual biochemistry has already turned out to be sci-
entifically and commercially important (e.g. see the discussion of PCR in the
last section of this chapter).

Viruses form another important category of living forms. Theyoatiga-
tory parasitesmeaning that they rely on the biochemical machinery of their
host cell to survive and reproduce. Viruses consist of just a small amount of
genetic material surrounded by a protein coat. A small virus, sugiX,as
which infects bacteria, can have as few as 5000 elements in its genetic mater-
ial. (Viruses that infect bactieria are calledcteriophagesor justphages).

Their simplicity and their role in human disease make viruses an active area
of study. They also play a crucial role in the technology of molecular biolo-
gy, as is described in the last section in this chapter.
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1.3 Evolutionary Time and Relatedness

There are so many different kinds of life, and they live in so many different

ways. It is amazing that their underlying functioning is so similar. The reason
that there is unity within all of that diversity is that all organisms appear to

have evolved from a common ancestor. This fundamental claim underpins
nearly all biological theorizing, and there is substantial evidence for it.

All evolutionary theories hold that the diversity of life arose by inherited
variation through an unbroken line of descent. This common tree of descent
is the basis for the taxonomy described above, and pervades the character of
all biological explanation. There is a great deal of argument over the detailed
functioning of evolution (e.g. whether it happens continuously or in bursts),
but practically every biologist agrees with that basic idea.

There are a variety of ways to estimate how long ago two organisms di-
verged; that is, the last time they had a common ancestor. The more related
two species are, the more recently they diverged. To the degree that pheno-
typic similarity indicates genotypic similarity, organisms can be classified on
the basis of their structure, which is the traditional method. Growing knowl-
edge of the DNA sequences of many genes in many organisms makes possi-
ble estimates of the time of genetic divergence directly, by comparing their
genetic sequences. If the rate of change can be quantified, and standards set,
these differences can be translated into a “molecular clock;” Li & Graur,
(1991) is a good introduction to this method. The underlying and somewhat
controversial assumption is that in some parts of the genome, the rate of mu-
tation is fairly constant. There are various methods for trying to find these
areas, estimate the rate of change, and hence calibrate the clock. The tech-
nigue has mostly confirmed estimates made with other methods, and is wide-
ly considered to be potentially reliable, if not quite yet so. Most of the dates |
will use below were derived from traditional (archaeological) dating.

In order to get a rough idea of the degrees of relatedness among creatures,
it is helpful to know the basic timeline of life on Earth. The oldest known
fossils, stromalites found in Australia, indicate that life began at least 3.8 bil-
lion years ago. Geological evidence indicates that a major meteor impact
about 4 billion years ago vaporized all of the oceans, effectively destroying
any life that may have existed before that. In effect, life on earth began al-
most as soon as it could have. Early life forms probably resembled modern
bacteria in some important ways. They were simple, single celled organisms,
without nuclei or other organelles. Life remained like that for nearly 2 billion
years. Then, about halfway through the history of life, a radical change oc-
curred: Eucarya came into being. There is evidence that eucarya began as
symbiotic collections of simpler cells which were eventually assimilated and
became organelles (see, e.g. Margolis (1981)). The advantages of these spe-
cialized cellular organelles made early eucarya very successful. Single-celled
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Eucarya become very complex, for example, developing mechanisms for
moving around, detecting prey, paralyzing it and engulfing it.

The next major change in the history of life was the invention of sex. Evo-
lution, as you recall, is a mechanism based on the inheritance of variation.
Where do these variations come from? Before the advent of sex, variations
arose solely through individual, random changes in genetic material. A muta-
tion might arise, changing one element in the genome, or a longer piece of a
genome might be duplicated or moved. If the changed organism had an ad-
vantage, the change would propagate itself through the population. Most mu-
tations are neutral or deleterious, and evolutionary change by mutation is a
very slow, random search of a vast space. The ability of two successful or-
ganisms to combine bits of their genomes into an offspring produced variants
with a much higher probability of success. Those moves in the search space
are more likely to produce an advantageous variation than random ones. Al-
though you wouldn’t necessarily recognize it as sex when looking under a
microscope, even some Bacteria exchange genetic material. How and when
sexual recombination first evolved is not clear, but it is quite ancient. Some
have argued that sexual reproduction was a necessary precursor to the devel-
opment of multicellular organisms with specialized cells (Buss, 1987). The
advent of sex dramatically changed the course of evolution. The new mecha-
nism for the generation of variation focused nature’s search through the
space of possible genomes, leading to an increase in the proportion of advan-
tageous variations, and an increase in the rate of evolutionary change.

This is probably a good place to correct a common misperception, namely
that some organisms are more "primitive" than others. Every existing organ-
ism has, tautologically, made it into the modern &ieple modern organ-
isms are not primitiveThe environment of the modern world is completely
unlike that of earth when life began, and even the simplest existing creatures
have evolved to survive in the present. It is possible to use groups of very
distantly related creatures (e.g. people and bacteria) to make inferences about
ancient organisms; whatever people and bacteria have in common are char-
acteristics that were most likely shared by their last common ancestor, many
eons ago. Aspects of bacteria which are not shared with people may have
evolved as recently as any human characteristic not shared with bacteria.
This applies to the relation between people and apes, too: apes are not any
more like ancestral primates than we are. It is what we inas@mmonwith
other organisms that tells us what our ancestors were like; the differences be-
tween us and other organisms are much less informative.

Whether or not it occurred as a result of the advent of sexual recombina-
tion, the origin of multicellular organisms led to a tremendous explosion in
the kinds of organisms and in their complexity. This event occurred only
about a billion years ago, about three quarters of the way through the history
of life.
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Of course, nearly all of the organisms people can see are multicellular (al-
though the blue-green algae in ponds and swimming pools are a kind of bac-
teria). Multicellular organisms gain their main evolutionary advantage
through cellular specialization. Creatures with specialized cells have the abil-
ity to occupy environmental niches that single-celled organisms cannot take
advantage of. In multicellular organisms, cells quite distant from each other
can exchange matter, energy or information for their mutual benefit. For ex-
ample, cells in the roots of a higher plant exist in a quite different environ-
ment than the cells in the leaves, and each supplies the other with matter or
energy not available in the local environment.

An important difference between multicellular organisms and a colony of
unicellular organisms (e.g. coral) is that multicellular organisms have sepa-
rated germ line (reproductive) cells from somatic (all the other) cells. Sperm
and eggs are germ cells; all the other kinds of cells in the body are somatic.
Both kinds of cells divide and make new cells, but only germ cells make new
organisms. Somatic cells are usually specialized for a particular task; they
are skin cells, or nerve cells, or blood cells. Although these cells divide,
when they divide, they create more of the same kind of cell. The division of
somatic cells and single celled organisms is a four stage process that ends
with mitosis,resulting in the production of two identiadughter cellsThe
process as a whole is referred to asctilecycle.

Only changes in germ cells are inherited from an organism to its off-
spring. A variation that arises in a somatic cell will affect all of the cell’'s de-
scendents, but it will not affect any of the organism’s descendents. Germ
cells divide in a process calledeiosis;part of this process is the production
of sperm and egg cells, each of which have only half the usual genetic mater-
ial. The advent of this distinction involved a complex and intricate balance
between somatic cells becoming an evolutionary deadends and the improved
competitive ability of a symbiotic collection of closely related cells.

Multicellular organisms all begin their lives from a single cell, a fertilized
egg. From that single cell, all of the specialized cells arise through a process
called cellular differentiation. The process of development from fertilized
egg to full adult is extremely complex. It involves not only cellular differen-
tiation, but the migration and arrangement of cells with respect to each other,
orchestrated changes in which genes are used and which are not at any given
moment, and even the programmed death of certain groups of cells that act
as a kind of scaffolding during development. The transition from single-
celled organism to multicellular creature required many dramatic innova-
tions. It was a fundamental shift of the level of selection: away from the indi-
vidual cell and to a collection of cells as a whole. The reproductive success
of a single cell line within a multicellular individual may not correlate with
the success of the individuaEmbryology and development are complex
and important topics, but are touched on only briefly in this chapter.
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Most of the discussion so far has focused on organisms that seem very
simple and only distantly related to people. On a biochemical level, however,
people are much like other eucaryotes, especially multicellular ones. Genetic
and biochemical distance doesn’t always correlate very well with morpho-
logical differences. For example, two rather similar looking species of frogs
may be much more genetically distant from each other than are, say, people
and cows (Cherty, Case & Wilson, 1978). A great deal of human biochem-
istry was already set by the time multicellular organisms appeared on the
Earth. We can learn a lot about human biology by understanding how yeasts
work.

We've now covered, very briefly, the diversity of living things, and some
of the key events in the evolution of life up to the origin of multicellular or-
ganisms. In the next section, we’ll take a closer look at how these complex
organisms work, and cover the parts of eucaryotic cells in a bit more detail.

2. Living Parts: Tissues, Cells,
Compartments and Organelles

The main advantage multicellular organisms possess over their single-celled
competitors is cell specialization. Not every cell in a larger organism has to
be able to extract nutrients, protect itself, sense the environment, move itself
around, reproduce itself and so on. These complex tasks can be divided up,
so that many different classes of cells can work together, accomplishing feats
that single cells cannot. Groups of cells specialized for a particular function
aretissuesand their cells are said to hadiferentiated Differentiated cells
(except reproductive cells) cannot reproduce an entire organism.

In people (and most other multicellular animals) there are fourteen major
tissue types. There are many texts with illustrations and descriptions of the
various cell types and tissue, e.g. Kessel and Kardon (1979) which is full of
beautiful electron micrographs. Some of these tissue types are familiar:
bones, muscles, cardiovascular tissue, nerves, and connective tissue (like ten-
dons and ligaments). Other tissues are the constituents of the digestive, respi-
ratory, urinary and reproductive systems. Skin and blood are both distinctive
tissue types, made of highly specialized cells. Lymphatic tissue, such as the
spleen and the lymph nodes make up the immune system. Endocrine tissue
comprises a network of hormone-producing glands (for example, the adrenal
gland, source of adrenaline) that exert global control over various aspects of
the body as a whole. Finally, epithelium, the most basic tissue type, lines all
of the body’s cavities, secreting materials such as mucus, and, in the in-

*Cancer is an example where a single cell line within a multicellular organism repro-
duces to the detriment of the whole.
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testines, absorbing water and nutrients.

There are more than 200 different specialized cell types in a typical verte-
brate. Some are large, some small; for example, a single nerve cell connects
your foot to your spinal cord, and a drop of blood has more than 10,000 cells
in it. Some divide rapidly, others do not divide at all; bone marrow cells di-
vide every few hours, and adult nerve cells can live 100 years without divid-
ing. Once differentiated, a cell cannot change from one type to another. Yet
despite all of this variation, all of the cells in a multicellular organism have
exactly the same genetic code. The differences between them come from dif-
ferences ingene expressigrthat is, whether or not a the product a gene
codes for is produced, and how much is produced. Control of gene expres-
sion is an elaborate dance with many participants. Thousands of biological
substances bind to DNA, or bind to other biomolecules that bind to DNA.
Genes code for products that turn on and off other genes, which in turn regu-
late other genes, and so on. One of the key research areas in biology is devel-
opment; how the intricate, densely interrelated genetic regulatory process is
managed, and how cells "know" what to differentiate into, and when and
where they do it. A prelude to these more complex topics is a discussion of
what cells are made of, and what they do.

2.1 The Composition of Cells

Despite their differences, most cells have a great deal in common with each
other. Every cell, whether a Archaea at the bottom of the ocean or a cell in a
hair follicle on the top of your head has certain basic qualities: they contain
cytoplasm and genetic material, are enclosed in a membrane and have the
basic mechanisms for translating genetic messages into the main type of bio-
logical molecule, the protein. All eucaryotic cells share additional compo-
nents. Each of these basic parts of a cell is described briefly below:

Membranes are the boundaries between the cell and the outside world.
Although there is no one moment that one can say life came into being, the
origin of the first cell membrane is a reasonable starting point. At that mo-
ment, self-reproducing systems of molecules were individuated, and cells
came into being. All present day cells havphaspholipidcell membrane.
Phospholipids arépids (oils or fats) with a phosphate group attached. The
end with the phosphate grouphigdrophillic @ttracted to water) and the lipid
end ishydrophobic(repelled by water). Cell membranes consist of two lay-
ers of these molecules, with the hydrophobic ends facing in, and the hy-
drophillic ends facing out. This keeps water and other materials from getting
through the membrane, except through special pores or channels.

A lot of the action in cells happens at the membrane. For single celled or-
ganisms, the membrane contains molecules that sense the environment, and
in some cells it can surround and engulf food, or attach and detach parts of it-
self in order to move. In Bacteria and Archaea, the membrane plays a crucial
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role in energy production by maintaining a large acidity difference between
the inside and the outside of the cell. In multicellular organisms, the mem-
branes contain all sorts of signal transduction mechanisms, adhesion mole-
cules, and other machinery for working together with other cells.

Proteins are the molecules that accomplish most of the functions of the
living cell. The number of different structures and functions that proteins
take on in a single organism is staggering. They make possible all of the
chemical reactions in the cell by acting eszymeghat promote specific
chemical reactions, which would otherwise occur only so slowly as to be
otherwise negligible. The action of promoting chemical reactions is called
catalysis and enzymes are sometimes refered wataysts which is a more
general term. Proteins also provide structural support, and are the keys to
how the immune system distinguishes self from invaders. They provide the
mechanism for acquiring and transforming energy, as well as translating it
into physical work in the muscles. They underlie sensors and the transmis-
sion of information as well.

All proteins are constructed from linear sequences of smaller molecules
called amino acids. There are twenty naturally occurring amino acids. Long
proteins may contain as many as 4500 amino acids, so the space of possible
proteins is very large: 28000r 1(P85Q Proteins also fold up to form partic-
ular three dimensional shapes, which give them their specific chemical func-
tionality. Although it is easily demonstrable that the linear amino acid se-
guence completely specifies the three dimensional structure of most proteins,
the details of that mapping is one of the most important open questions of bi-
ology. In addition a protein's three dimensional structure is not fixed; many
proteins move and flex in constrained ways, and that can have a significant
role in their biochemical function. Also, some proteins bind to other groups
of atoms that are required for them to function. These other structures are
called prosthetic groupsAn example of a prosthetic group heme,which
binds oxygen in the protein hemoglobin. | will discuss proteins in more de-
tail again below.

Genetic material codes for all the other constituents of the the cell. This
information is generally stored in long strands of DNA. In Bacteria, the DNA
is generally circular. In Eucaryotes, it is linear. During cell division Eucary-
otic DNA is grouped into X shaped structures called chromosomes. Some
viruses (like the AIDS virus) store their genetic material in RNA. This genet-
ic material contains the blueprint for all the proteins the cell can produce. Il
have much more to say about DNA below.

Nuclei are the defining feature of Eucaryotic cells. The nucleus contains
the genetic material of the cell in the formabiromatin Chromatin contains
long stretches of DNA in a variety of conformatidrsyrrounded bywuclear
proteins.The nucleus is separated from the rest of the cellryckear mem-
brane.Nuclei show up quite clearly under the light microscope; they are per-
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haps the most visible feature of most cells.

Cytoplasmis the name for the gel-like collection of substances inside the
cell. All cells have cytoplasm. The cytoplasm contains a wide variety of dif-
ferent substances and structures. In Bacteria and Archaea, the cytoplasm con-
tains all of the materials in the cell. In Eucarya, the genetic material is segre-
gated into the cell nucleus.

Ribosomesare large molecular complexes, composed of several proteins
and RNA molecules. The function of ribosomes is to assemble proteins. All
cells, including Bacteria and Archaea have ribosomes. The process of trans-
lating genetic information into proteins is described in detail below. Ribo-
somes are where that process occurs, and are a key part of the mechanism for
accomplishing that most basic of tasks.

Mitochondria and Chroloplasts are cellular organelles involved in the
production the energy that powers the cell. Mitochondria are found in all eu-
caryotic cells, and their job is respiration: using oxygen to efficiently turn
food into energy the cell can use. Some bacteria and archaea get their energy
by a process calleglycolysis from glyco- (sugar) and -lysis (cleavage or de-
struction). This process creates two energy-carrying molecules for every
molecule of sugar consumed. As oxygen became more abiinsamte or-
ganisms found a method for using it (callexidative phosphorylatignto
make an order of magnitude increase in their ability to extract energy from
food, getting 36 energy-carrying molecules for every sugatr.

These originally free living organisms were engulfed by early eucaryotes.
This symbiosis gradually became obligatory as eucaryotes came to depend
on their mitochondria for energy, and the mitochondria came to depend on
the surrounding cell for many vital functions and materials. Mitochondria
still have their own genetic material however, and, in sexually reproducing
organisms, are inherited only via the cytoplasm of the egg cell. As a conse-
guence, all mitochondria are maternally inherited.

Like the mitochondria, chloroplasts appear to have originated as free-liv-
ing bacteria that eventually became obligatory symbionts, and then parts of
eucaryotic plant cells. Their task is to convert sunlight into energy-carrying
molecules.

Other Parts of Cells. There are other organelles found in eucaryotic

*Conformationmeans shape, connoting one of several possible shapes. DNA confor-
mations include the traditional double helixsupercoiledstate where certain parts of

the molecule are deeply hidden, a reverse coiled state called Z-DNA, and several oth-
ers.

tThere was very little oxygen in the early atmosphere. Oxygen is a waste product of
glycolysis, and it eventually became a significant component of the atmosphere. Al-
though many modern organisms depend on oxygen to live, it is a very corrosive sub-
stance, and living systems had to evolve quite complex biochemical processes for
dealing with it.
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cells. Theendoplasmic reticulurtthere are two kinds, rough and smooth) is
involved in the production of the cell membrane itself, as well as in the pro-
duction of materials that will eventually be exported from the cell.Gtigi
apparatusare elongated sacs that are involved in the packaging of materials
that will be exported from the cell, as well as segregating materials in the cell
into the correct intracellular compartmelngsosomesontain substances that

are used to digest proteins; they are kept separate to prevent damage to other
cellular components. Some cells have other structures, sugcaslesof

lipids for storage (like the ones often found around the abdomen of middle-
aged men).

Now that you have a sense of the different components of the cell, we can
proceed to examine the activities of these components. Life is a dynamical
system, far from equilibrium. Biology is not only the study of living things,
but living actions.

3. Life as a Biochemical Process

Beginning with the highest levels of taxonomy, we have taken a quick
tour of the varieties of organisms, and have briefly seen some of their impor-
tant parts. So far, this account has been entirely descriptive. Because of the
tremendous diversity of living systems, descriptive accounts are a crucial un-
derpinning to any more explanatory theories. In order to understand how bio-
logical systems work, one has to know what they are.

Knowledge of cells and tissues makes possible the functional accounts of
physiology. For example, knowing that the cells in the bicep and in the heart
are both kinds of muscle helps explain how the blood circulates. However, at
this level of description, the work that individual cells are able to do remains
mysterious. The revolution in biology over the last three decades resulted
from the understanding cells in terms of their chemistry. These insights
began with descriptions of the molecules involved in living processes, and
now increasingly provides an understanding of the molecular structures and
functions that are the fundamental objects and actions of living material.

More and more of the functions of life (e.g. cell division, immune reac-
tion, neural transmission) are coming to be understood as the interactions of
complicated, self-regulating networks of chemical reactions. The substances
that carry out and regulate these activities are generally referred to as bio-
molecules. Biomolecules include proteins, carbohydrates, lipids—all called
macromoleculebecause they are relatively large—and a variety of small
molecules. The genetic material of the cell specifies how to create proteins,
as well as when and how much to create. These proteins, in turn, control the
flow of energy and materials through the cell, including the creation and
transformation of carbohydrates, lipids and other molecules, ultimately ac-
complishing all of the functions that the cell carries out. The genetic material
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itself is also now known to be a particular macromolecule: DNA.

In even the simplest cell, there are more than a thousand kinds of biomol-
ecules interacting with each other; in human beings there are likely to be
more than 100,000 different kinds of proteins specified in the genome (it is
unlikely that all of them are present in any particular cell). Both the amount
of each molecule and its concentration in various compartments of the cell
determines what influence it will have. These concentrations vary over time,
on scales of seconds to decades. Interactions among biomolecules are highly
non-linear, as are the interactions between biomolecules and other molecules
from outside the cell. All of these interactions take place in parallel among
large numbers of instances of each particular type. Despite this daunting
complexity, insights into the structure and function of these molecules, and
into their interactions are emerging very rapidly.

One of the reasons for that progress is the conception of life as a kind of
information processing. The processes that transform matter and energy in
living systems do so under the direction of a set of symbolically encoded in-
structions. The “machine” language that describes the objects and processes
of living systems contains four letters, and the text that describes a person
has about as many characters as three years’ worth dfetlveYork Times
(about 3x18). In the next section, we will delve more deeply into the the
chemistry of living systems.

4. The Molecular Building Blocks of Life

Living systems process matter, energy and information. The basic principle
of life, reproduction, is the transformation of materials found in the environ-
ment of an organism into another organism. Raw materials from the local en-
vironment are broken down, and then reassembled following the instructions
in the genome. The offspring will contain instructions similar to the parent.
The matter, energy and information processing abilities of living systems are
very general; one of the hallmarks of life is its adaptability to changing cir-
cumstances. Some aspects of living systems have, however, stayed the same
over the years. Despite nearly 4 billion years of evolution, the basic molecu-
lar objects for carrying matter, energy and information have changed very lit-
tle. The basic units of matter are proteins, which subserve all of the structural
and many of the functional roles in the cell; the basic unit of energy is a
phosphate bond in the molecule adenosine triphosphate (ATP); and the units
of information are four nucleotides, which are assembled together into DNA
and RNA.

The chemical composition of living things is fairly constant across the en-
tire range of life forms. About 70% of any cell is water. About 4% are small
molecules like sugars and inorgains’. One of these small molecules is
ATP, the energy carrier. Proteins make up between 15% and 20% of the cell;
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DNA and RNA range from 2% to 7% of the weight. The cell membranes,
lipids and other, similar molecules make up the remaining 4% to 7% (Al-
berts, et al., 1989).

4.1 Energy

Living things obey all the laws of chemistry and physics, including the sec-
ond law of thermodynamics, which states that the amount of entropy (disor-
der) in the universe is always increasing. The consumption of energy is the
only way to create order in the face of entropy. Life doesn’t violate the sec-
ond law; living things capture energy in a variety of forms, use it to create in-
ternal order, and then transfer energy back to the environment as heat. An in-
crease in organization within a cell is coupled with a greater increase in
disorder outside the cell.

Living things must capture energy, either from sunlight through photosyn-
thesis or from nutrients by respiration. The variety of chemicals that can be
oxidized by various species to obtain energy through respiration is immense,
ranging from simple sugars to complex oils and even sulfur compounds from
deep sea vents (in the case of Archaea).

In many cases, the energy is first available to the cell as an electrochemi-
cal gradient across the cell membrane. The cell can tap into electrochemical
gradient by coupling the energy that results from moving electrons across the
membrane to other processes. There are many constraints on the flow of en-
ergy through a living system. Most of the chemical reactions that organisms
need to survive require an input of a minimum amount of energy to take
place at a reasonable rates; efficient use of energy dictates that this must be
delivered in a quanta exceeding the minimum requirement only slightly.

The energy provided for biochemical reactions has to be useable by many
different processes. It must be possible to provide energy where it is needed,
and to store it until it is consumed. The uses of energy throughout living
systems are very diverse. It is needed to synthesize and transport biomole-
cules, to create mechanical action through the muscle proteins actin and
myosin, and to create and maintain electrical gradients, such as the ones that
neurons use to communicate and compute.

Storing and transporting energy in complex biochemical systems runs the

*An inorganic ion is a charged atom, or a charged small group of atoms, not involv-
ing carbon. These substances, like iron and zinc, play small but vital role. For exam-
ple, changing the balance of calcium and sodium ions across a cell membrane is the
basic method for exciting of neurons.

The individual building blocks of the larger molecules, i.e. amino acids and nucleic
acids, are also considered small molecules when not part of a larger structure. Some
of these molecules play roles in the cell other than as components of large molecules.
For example, the nucleic acid adenine is at the core of the energy carrying molecule
adenosine triphosphate (ATP).
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risk of disrupting chemical bonds other than the target ones, so the unit of en-
ergy has to be small enough not to do harm, but large enough to be useful.
The most common carrier of energy for storage and transport is the outer-
most phosphate bond in the molecatienosine triphosphater ATP. This
molecule plays a central role in every living system: it is the carrier of ener-
gy. Energy is taken out of ATP by the processiydrolysis which removes

the outermost phosphate group, producing the molecule adenosine diphos-
phate (ADP). This process generates about 12 kcal pef ofod P, a quan-

tity appropriate for performing many cellular tasks. The energy “charge” of a
cell is expressed in the ratio of ATP/ADP and the electrochemical difference
between the inside and the outside of the cell (which is callemathemem-

brane potentigl If ATP is depleted, the movement of ions caused by the
transmembrane potential will result in the synthesis of additional ATP. If the
transmembrane potential has been reduced (for example, after a neuron
fires), ATP will be consumed to pump ions back across the gradient and re-
store the potential.

ATP is involved in most cellular processes, so it is sometimes called a
currencymetabolite. ATP can also be converted to other high energy phos-
phate compounds such esatine phosphateor other nucleotide triphos-
phates. In turn, these molecules provide the higher levels of energy necessary
to transcribe genes and replicate chromosomes. Energy can also be stored in
different chemical forms. Carbohydrates like glycogen provide a moderate
density, moderately accessible form of energy storage. Fats have very high
energy storage density, but the energy stored in them takes longer to retrieve.

4.2 Proteins

Proteins are the primary components of living things, and they play many
roles. Proteins provide structural support and the infrastructure that holds a
creature together; they are enzymes that make the chemical reactions neces-
sary for life possible; they are the switches that control whether genes are
turned on or off; they are the sensors that see and taste and smell, and the ef-
fectors that make muscles move; they are the detectors that distinguish self
from nonself and create an immune response. Finding the proteins that make
up a creature and understanding their function is the foundation of explana-
tion in molecular biology.

Despite their radical differences in function, all proteins are made of the
same basic constituents: the amino acids. Each amino acid shares a basic
structure, consisting of a central carbon atom (Caramogroup (NHy) at

*kcal is an abbreviation for kilocalorie, the amount of energy necessary to raise a liter
of water one degree centigrade at standard temperature and pressure. It is equivalent
to 1 dieter's calorie. A mole is an amount of a substance, measured in terms of the
number of molecules, rather than by its mass. One mole is Banidlecules.
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Figure 2: The basic chemical structure of an amino acid. Carbon atoms are black,
Oxygen is dark grey, Nitrogen light grey, and hydrogen white.

one end, @arboxylgroup (COOH) at the other, and a variable sidechain (R),
as shown in Figure 2. These chemical groups determine how the molecule
functions, as Mavrovouniotis’s chapter in this volume explains. For example,
under biological conditions the amino end of the molecule is positively
charged, and the carboxyl end is negatively charged. Chains of amino acids
are assembled by a reaction that occurs between the nitrogen atom at the
amino end of one amino acid and the carbon atom at the carboxyl end of an-
other, bonding the two amino acids and releasing a molecule of water. The
linkage is called geptide bondand long chains of amino acids can be
strung together into polymérscalledpolypeptidesin this manner. All pro-

teins are polypeptides, although the term polypeptide generally refers to
chains that are shorter than whole proteins.

When a peptide bond is formed, the amino acid is changed (losing two
hydrogen atoms and an oxygen atom), so the portion of the original molecule
integrated into the polypeptide is often calledesidue.The sequence of
amino acid residues that make up a protein is called the propeimiary
structure.The primary structure is directly coded for in the genetic material:
The individual elements of a DNA molecule form triples which
unambiguously specify an amino acid. A genetic sequence maps directly into
a sequence of amino acids. This process is discussed in greater detail below.

It is interesting to note that only a small proportion of the very many pos-
sible polypeptide chains are naturally occurring proteins. Computationally,
this is unsurprising. Many proteins contain more than 100 amino acids (some
*Polymers are long strings of similar elements; -mer means “element,” as in
monomer, dimer, etc. Homopolymer is a term that refers to polymers made up of all
the same element; heteropolymers are made of several different units. Proteins and

DNA are both heteropolymers. Glycogen, a substance used for the medium-term
storage of excess energy, is an example of a homopolymer.
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have more than 4000). The number of possible polypeptide chains of length
100 is 2890 or more than 1830 Even if we take the high estimates of the
number of species (5xIpand assume that they all have as many different
proteins as there are in the most complex organism/{<ditl that no two
organisms share a single protein, the ratio of actual proteins to possible
polypeptides is much less than 1298—a very small proportion, indeed.

The twenty naturally occuring amino acids all have the common elements
shown in Figure 2. The varying parts are cali@kchainsthe two carbons
and the nitrogen in the core are sometimes calleh#itkbone Peptide
bonds link together the backbones of a sequence of amino acids. That link
can be characterized as having two degrees of rotational freedom, tipg phi (
and psi @) angles (although from the point of view of physics this is a dras-
tic simplification, in most biological contexts it is valid). The conformation
of a protein backbone (i.e. its shape when folded) can be adequately de-
scribed as a series @f angles, although it is also possible to represent the
shape using the Cartesian coordinates of the central backbone atom (the
alpha carbon, written @), or using various other representational schemes
(see, e.g., Hunter or Zhang & Waltz in this volume).

The dimensions along which amino acids vary are quite important for a
number of reasons. One of the major unsolved problems in molecular biolo-
gy is to be able to predict the structure and function of a protein from its
amino acid sequence. It was demonstrated more than two decades ago that
the amino acid sequence of a protein determines ultimate conformation and,
therefore, its biological activity and function. Exactly how the properties of
the amino acids in the primary structure of a protein interact to determine the
protein’s ultimate conformation remains unknown. The chemical properties
of the individual amino acids, however, are known with great precision.
These properties form the basis for many representations of amino acids, e.g.
in programs attempting to predict structure from sequence. Here is a brief
summary of some of them.

Glycineis the simplest amino acid; its sidechain is a single hydrogen
atom. It is nonpolar, and does not ionize easily. pblarity of a molecule
refers to the degree that its electrons are distributed asymmetrically. A non-
polar molecule has a relatively even distribution of chamgzationis the
process that causes a molecule to gain or lose an electron, and hence become
charged overall. The distribution of charge has a strong effect on the behav-
ior of a molecule (e.g. like charges repel). Another important characteristic
of glycine is that as a result of having no heavy (i.e. non-hydrogen) atoms in
its sidechain, it is very flexible. That flexibility can give rise to unusual kinks
in the folded protein.

Alanineis also small and simple; its sidechain is justeghylgroup (con-
sisting of a carbon and three hydrogen atoms). Alanine is one of the most
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commonly appearing amino acids. Glycine and alanine’s sidechains are
aliphatic, which means that they are straight chains (no loops) containing
only carbon and hydrogen atoms. There are three other aliphatic amino acids:
valine, leucineandisoleucine.The longer aliphatic sidechains are hydropho-
bic. Hydrophobicity is one of the key factors that determines how the chain
of amino acids will fold up into an active protein. Hydrophobic residues tend
to come together to form compact core that exclude water. Because the envi-
ronment inside cells iasqueous(primarily water), these hydrophobic
residues will tend to be on the inside of a protein, rather than on its surface.

In contrast to alanine and glycine, the sidechains of amino phitsy-
lalaning, tyrosineandtryptophanare quite large. Size matters in protein fold-
ing because atoms resist being too close to one another, so it is hard to pack
many large sidechains closely. These sidechains aram@lswtic meaning
that they form closed rings of carbon atoms with alternating double bonds
(like the simple molecule benzene). These rings are large and inflexible.
Phenylalanine and tryptophan are also hydrophobic. Tyrosine thalraxyl
group (an OH at the end of the ring), and is therefore more reactive than the
other sidechains mentioned so far, and less hydrophobic. These large amino
acids appear less often than would be expected ifproteins were composed
randomly.Serineandthreoninealso contain hydroxyl groups, but do not
have rings.

Another feature of importance in amino acids is whether they ionize to
form charged groups. Residues that ionize are characterized bylheir
which indicates at whatH (level of acidity) half of the molecules of that
amino acid will have ionizedArginine and lysine have high pK’s (that is,
they ionize in basic environments) anidtiding gluatmic acidandaspartic
acid have low pK’s (they ionize in acidic ones). Since like charges repel and
opposites attract, charge is an important feature in predicting protein confor-
mation. Most of the charged residues in a protein will be found at its surface,
although some will form bonds with each other on the inside of the molecule
(called salt-bridge$ which can provide strong constraints on the ultimate
folded form.

Cysteineand methioninehave hydrophobic sidechains that contain a sul-
phur atom, and each plays an important role in protein structure. The sul-
phurs make the amino acids' sidechains very reactive. Cysteines can form
disulphidebonds with each other; disulphide bonds often hold distant parts
of a polypeptide chain near each other, constraining the folded conformation
like salt bridges. For that reason, cysteines have a special role in determining
the three dimensional structure of proteins. The chapter by Holbrook, Muskal
and Kim in this volume discusses the prediction of this and other folding
constraints. Methionine is also important because all eucaryotic proteins,
when originally synthesized in the ribosome, start with a methionine. It is a
kind of “start” signal in the genetic code. This methionine is generally re-
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moved before the protein is released into the cell, however.

Histidine is a relatively rare amino acid, but often appears inatlizre
site of an enzyme. The active site is the small portion of an enzyme that ef-
fects the target reaction, and it is the key to understanding the chemistry in-
volved. The rest of the enzyme provides the necessary scaffolding to bring
the active site to bear in the right place, and to keep it away from bonds that
it might do harm to. Other regions of enzymes can also act as a switch, turn-
ing the active site on and off in a process catlkdisteric control. Because
histidine’s pK is near the typical pH of a cell, it is possible for small, local
changes in the chemical environment to flip it back and forth between being
charged and not charged. This ability to flip between states makes it useful
for catalyzing chemical reactions. Other charged residues also sometimes
play a similar role in catalysis.

With this background, it is now possible to understand the basics of the
protein folding problem which is the target of many of the Al methods ap-
plied in this volume. The genetic code specifies only the amino acid se-
guence of a protein. As a new protein comes off the ribosome, it folds up into
the shape that gives it its biochemical function, sometimes calledtite
conformation(the same protein unfolded into some other shape is said to be
denatureg which is what happens, e.g. to the white of an egg when you cook
it). In the cell, this process takes a few seconds, which is a very long time for
a chemical reaction. The complex structure of the ribosome may play a role
in protein folding, and a few proteins need helper molecules, terhaazbr-
onesto fold properly. However, these few seconds are a very short time com-
pared to how long it takes people to figure out how a protein will fold. In raw
terms, the folding problem involves finding the mapping from primary se-
guence (a sequence of from dozens to several thousand symbols, drawn from
a 20 letter alphabet) to the real-numbered locations of the thousands of con-
stituent atoms in three space.

Although all of the above features of amino acids play some role in protein
folding, there are few absolute rules. The conformation a protein finally as-
sumes will minimize the total “free” energy of the molecule. Going against the
tendencies described above (e.g. packing several large sidechains near each
other) increases the local free energy, but may reduce the energy elsewhere in
the molecule. Each one of the tendencies described can be traded off against
some other contribution to the total free energy of the folded protein. Given
any conformation of atoms, it is possible in principle to compute its free ener-
gy. Ideally, one could examine all the possible conformations of a protein, cal-
culate the free energy by applying quantum mechanical rules, and select the
minimum energy conformation as a prediction of the folded structure. Unfortu-
nately, there are very many possible conformations to test, and each energy
calculation itself is prohibitively complex. A wide variety of approaches have
been taken to making this problem tractable, and, given a few hours of super-
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computer time, it is currently possible to evaluate several thousand possible
conformations. These techniques are well surveyed in Karplus & Petsko
(1990). An alternative to the pure physical simulations are the various Al ap-
proaches which a significant portion of this volume is dedicated to describing.
The position of the atoms in a folded protein is calledeitSary struc-
ture. Theprimary structure is the amino acid sequengecondarystructure
refers to local arrangements of a few to a few dozen amino acid residues that
take on particular conformations that are seen repeatedly in many different
proteins. These shapes are stabilizethymrogen bondéa hydrogen bond is
a relatively weak bond that also plays a role in holding the two strands of the
DNA molecule together). There are two main kinds of secondary structure:
corkscrew-shaped conformations where the amino acids are packed tightly
together, calledr-helices and long flat sheets made up of two or more adja-
cent strands of the molecule, extended so that the amino acids are stretched
out as far from each other as they can be. Each extended chain is ¢alled a
strand and two or morgd-strands held together by hydrogen bonds are
called aB-sheet3-sheets can be composed of strands running in the same di-
rection (called garallel B-sheet) or running in the opposite directi@m-
tiparallel). Other kinds of secondary structure include structures that are
even more tightly packed tharhelices calleB-10 helicesand a variety of
small structures that link other structures, caffadrns. Some local combi-
nations of secondary structures have been observed in a variety of different
proteins. For example, twa-helices linked by a turn with an approximately
60° angle have been observed in a variety of proteins that bind to DNA. This
pattern is called théelix-turn-helixmotif, and is an example of what is
known assuper-secondargtructure Finally, some proteins only become
functional when assembled with other molecules. Some proteins bind to
copies of themselves; for example, some DNA-binding proteins only func-
tion as dimers (linked pairs). Other proteins require prostehtic groups such as
heme or chlorophyl. Additions necessary to make the folded protein active
are termed the proteintuaternarystructure.

4.3 Nucleic Acids

If proteins are the workhorses of the biochemical world, nucleic acids are
their drivers; they control the action. All of the genetic information in any
living creature is stored in deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA), which are polymers of four simple nucleic acid units, cafiad
cleotides There are four nucleotides found in DNA. Each nucleotide consists
of three parts: one of two base moleculepyane or apyrimidine, plus a

sugar (ribose in RNA and deoxyribose DNA), and one or more phosphate
groups. The purine nucleotides adenine(A) and guanine(G), and the
pyrimidines arecytosine(C) andthymine(T). Nucleotides are sometimes
called bases, and, since DNA consists of two complementary strands bonded
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together, these units are often called base-pairs. The length of a DNA se-
guences is often measured in thousands of bases, abbreviated kb. Nucleotides
are generally abbreviated by their first letter, and appended into sequences,
written, e.g., CCTATAG. The nucleotides are linked to each other in the
polymer by phosphodiester bonds. This bond is directional, a strand of DNA
has a head (called tl¢ end) and a tail (th&' end).

One well known fact about DNA is that it forms a double helix; that is,
two helical (spiral-shaped) strands of the polypeptide, running in opposite di-
rections, held together by hydrogen bonds. Adenines bond exclusively with
the thymines (A-T) and guanines bond exclusively with cytosines (G-C). Al-
though the sequence in one strand of DNA is completely unrestricted, be-
cause of these bonding rules the sequence in the complementary strand is
completely determined. It is this feature that makes it possible to make high
fidelity copies of the information stored in the DNA. It is also exploited
when DNA is transcribed into complementary strands of RNA, which direct
the synthesis of protein. The only difference is that in RNA, uracil (U) takes
the place of thymine; that is, it bonds to adenine.

DNA molecules take a variety of conformations (shapes) in living sys-
tems. In most biological circumstances, the DNA forms a classic double
helix, called B-DNA,; in certain circumstances, however, it can become su-
percoiled or even reverse the direction of its twist (this form is called Z-
DNA). These alternative forms may play a role in turning particular genes on
and off (see below). There is some evidence that the geometry of the B-DNA
form (e.g for example, differing twist angles between adjacent base pairs)
may also be exploited by cell mechanisms. The fact that the conformation of
the DNA can have a biological effect over and above the sequence it encodes
highlights an important lesson for computer scientigtsre is more infor-
mation available to a cell than appears in the sequence databHsiedes-
son also applies to protein sequences, as we will see in the discussion of
post-translational modification.

Now that we have covered the basic structure and function of proteins and
nucleic acids, we can begin to put together a picture of the molecular pro-
cessing that goes on in every cell.

5. Genetic Expression: From Blueprint to Finished Product

5.1 Genes, the Genome and the Genetic Code

The genetic information of an organism can be stored in one or more distinct
DNA molecules; each is calledcaromosomeln some sexually reproducing
organisms, calledliploids, each chromosome contains two similar DNA
molecules physically bound together, one from each parent. Sexually repro-
ducing organisms with single DNA molecules in their chromosomes are
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called haploid. Human beings are diploid with 23 pairs of linear chromo-
somes. In Bacteria, it is common for the ends of the DNA molecule to bind
together, forming a circular chromosome. All of the genetic information of
an organism, taken together as a whole, is refered togenitsne

The primary role of nucleic acids is to carry the encoding of the primary
structure of proteins. Each non-overlapping triplet of nucleotides, called a
codon corresponds to a particular amino acid (see table 1). Four nucleotides
can form # = 64 possible triplets, which is more than the 20 needed to code
for each amino acid (pairs would provide only 16 codons). Three of these
codons are used to designate the end of a protein sequence, and are called
stop codons. The others all code for a particular amino acid. That means that
most amino acids are encoded by more than one codon. For example, alanine
is represented in DNA by the codons GCT, GCC, GCA and GCG. Notice
that the first two nucleotides of these codons are all identical, and that the
third is redundant. Although this is not true for all of the amino acids, most
codon synonyms differ only in the last nucleotide. This phenomenon is
called thedegeneracyf the code. Whether it is an artifact of the evolution,
or serves a purpose such as allowing general changes in the global composi-
tion of DNA (e.g. increasing the proportion of purines) without changing the
coded amino acids is still unknown.

There are some small variations in the translation of codons into amino
acids from organism to organism. Since the code is so central to the function-
ing of the cell, it is very strongly conserved over evolution. However, there
are a few systems that use a slightly different code. An important example is
found in mitochondria. Mitochondria have their own DNA, and probably
represent previously free living organisms that were enveloped by eucary-
otes. Mitochondrial DNA is translated using a slightly different code, which
is more degenerate (has less information in the third nucleotide) than the
standard code. Other organisms that diverged very early in evolution, such as
the ciliates, also use different codes.

The basic process of synthesizing proteins maps from a sequence of
codons to a sequence of amino acids. However, there are a variety of impor-
tant complications. Since codons come in triples, there are three possible
places to start parsing a segment of DNA. For example, the chain
...AATGCGATAAG... could be read ...AAT-GCG-ATA... or ...ATG-CGA-
TAA... or .. TGC-GAT-AAG.... This problem is similar to decoding an asyn-
chronous serial bit stream into bytes. Each of these parsings is cadhed a
ing frame A parsing with a long enough string of codons with no intervening
stop codons is called apen reading frameor ORF, and could be translated
into a protein. Organisms sometimes code different proteins with overlap-
ping reading frames, so that if the reading process shifts by one character, a
completely different, but still functional protein results! More often, frame
shifts, which can be introduced by insertions and deletions in the DNA se-
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guence or transcriptional “stuttering,” produce nonsense.

Not only are there three possible reading frames in a DNA sequence, it is
possible to read off either strand of the double helix. Recall that the second
strand is the complement of the first, so that our example above (AATGC-
GATAAG) can also be read inverted and in the opposite direction, e.g. CT-
TATCGCATT. This is sometimes called reading from dméisenser comple-
mentarystrand. An antisense message can also be parsed three ways, making a
total of 6 possible reading frames for every DNA sequence. There are known
examples of DNA sequences that code for proteins in both directions with sev-
eral overlapping reading frames: quite a feat of compact encoding.

And there’s more. DNA sequences coding for a single protein in most eu-
caryotes have noncoding sequences, calwans, inserted into them.
These introns are spliced out before the sequence is mapped into amino
acids. Different eucaryotes have a variety of different systems for recogniz-
ing and removing these introns. Most bacteria don’t have introns. It is not
known whether introns evolved only after the origin of eucaryotes, or
whether selective pressure has caused bacteria to lose theirs. The segments
of DNA that actually end up coding for a protein are cadirdns You can
keep these straight by remembering timtons areinsertions, and that
exons areexpressed.

DNA contains a large amount of information in addition to the coding se-
guences of proteins. Every cell in the body has the same DNA, but each cell
type has to generate a different set of proteins, and even within a single cell
type, its needs change throughout its life. An increasing number of DNA sig-
nals that appear to play a role in the control of expression are being charac-
terized. There are a variety of signals identifying where proteins begin and
end, where splices should occur, and an exquisitely detailed set of mecha-
nisms for controlling which proteins should be synthesized and in what
guantities. Large scale features of a DNA molecule, such as a region rich in
Cs and Gs can play a biologically important role, too.

Finally, some exceptions to the rules | mentioned above should be noted.
DNA is sometimes found in single strands, particularly in some viruses.
Viruses also play other tricks with nucleic acids, such as transcribing RNA
into DNA, going against the normal flow of information in the cell. Even
non-standard base-pairings sometimes play an important role, such as in the
structure of transfer RNA (see below).

5.2 RNA: Transcription, Translation, Splicing & RNA Structure

The process of mapping from DNA sequence to folded protein in eucaryotes
involves many steps (see Figure 3). The first step isrémscriptionof a
portion of DNA into an RNA molecule, called a messenger RNA (MRNA).
This process begins with the binding of a molecule called RNA polymerase
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to a location on the DNA molecule. Exactly where that polymerase binds de-
termines which strand of the DNA will be read and in which direction. Parts
of the DNA near the beginning of a protein coding region contain signals
which can be recognized by the polymerase; these regions arepratisut-

ers (Promoters and other control signals are discussed further below.) The
polymerase catalyzes a reaction which causes the DNA to be used as a tem-
plate to create a complementary strand of RNA, calledhtheary tran-

script This transcript contains introns as well as exons. At the end of the
transcript, 250 or more extra adenosines, callpdlgA tail, are often added

to the RNA. The role of these nucleotides is not known, but the distinctive
signature is sometimes used to detect the presence of mMRNAs.

The next step is theplicing the exons together. This operation takes
takes place in a ribosome-like assembly callegplceosomeThe RNA re-
maining after the introns have been spliced out is calledtaremRNA. It
is then transported out of the nucleus to the cytoplasm, where it then binds
to a ribosome.

A ribosome is a very complex combination of RNA and protein, and its
operation has yet to be completely understood. It is at the ribosome that the
MRNA is used as a blueprint for the production of a protein; this process is
calledtranslation The reading frame that the translation will use is deter-
mined by the ribosome. The translation process depends on the presence of
molecules which make the mapping from codons in the mRNA to amino
acids; these molecules are calteansfer-RNAor tRNAs.tRNAs have an
anti-codon (that binds to its corresponding codon) near one end and the cor-
responding amino acid on the other end. The anti-codon end of the tRNAs
bind to the mRNA, bringing the amino acids corresponding the mRNA se-
guence into physical proximity, where they form peptide bonds with each
other. How the tRNAs find only the correct amino acid was a mystery until
quite recently. This process depends on the three dimensional structure of the
RNA molecule, which is discussed in Steeg’s chapter of this volume. As the
protein comes off the ribosome, it folds up into its native conformation. This
process may involve help from the ribosome itself or from chaperone mole-
cules, as was described above.

Once the protein has folded, other transformations can occur. Various
kinds of chemical groups can be bound to different places on the proteins, in-
cluding sugars, phosphate, actyl or methyl groups. These additions can
change the hyrogen bonding proclivity or shape of the protein, and may be
necessary to make the protein active, or may keep it from having an effect
before it is needed. The general term for these transformatipostisrans-
lational modificationsOnce this process is complete, the protein is then
transported to the part of the cell where it will accomplish its function. The
transport process may be merely passive diffusion through the cytoplasm, or
there may be an active transport mechanism that moves the protein across
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Figure 3. A schematic drawing of the entire process of protein synthesis. An RNA
Polymerase binds to a promoter region of DNA, and begins the transcription process,
which continues until a stop codon is reached. The product is an RNA molecule
called the primary transcript, which contains regions that code for proteins (exons)
and regions which do not (introns). The introns are spliced out at splicosomes, and
the joined exons are transported to a ribosome. There, transfer RNAs match amino
acids to the appropriate codons in the RNA; the amino acids form peptide bonds and
become an unfolded protein. The protein then folds into local formations like helices
and sheets, and forms internal bonds across longer distances. Post-translational
processing can add additional substance; e.g., glycosylation adds sugar molecules to
the protein.
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membranes or into the appropriate cellular compartment.

5.3 Genetic Regulation

Every cell has the same DNA. Yet the DNA in some cells codes for the pro-
teins needed to function as, say, a muscle, and other code for the proteins to
make the lens of the eye. The difference lies in the regulation of the genetic
machinery. At any particular time, a particular cell is producing only a small
fraction of the proteins coded for in its DNA. And the amount of each pro-
tein produced must be precisely regulated in order for the cell to function
properly. The cell will change the proteins it synthesizes in response to the
environment or other cues. The mechanisms that regulate this process consti-
tute a finely tuned, highly parallel system with extensive multifactoral feed-
back and elaborate control structure. It is also not yet well understood.

Genes are generally said to be on or offgxpressed/not expresgedl-
though the amount of protein produced is also important. The production
process is controlled by a complex collection of proteins in the nucleus of
eucaryotic cells that influence which genes are expressed. Perhaps the most
important of these proteins are thistones which are tightly bound to the
DNA in the chromosomes of eucaryotes. Histones are some of the most con-
served proteins in all of life. There are almost no differences in the sequence
of plant and mammalian histones, despite more than a billion years of diver-
gence in their evolution. Other proteins swarm around the DNA, some
influencing the production of a single gene (either encouraging or inhibiting
it), while others can influence the production of large humbers of genes at
once. An important group of these proteins are catfpdisomeraseghey
rearrange and untangle the DNA in various ways, and are the next most
prevalent proteins in the chromosome.

Many regulatory proteins recognize and bind to very specific sequences in
the DNA. The sequences that these proteins recognize tend to border the pro-
tein coding regions of genes, and are known generatiprasol regions Se-
guences that occur just upstream (towards the 5' end) of the coding region
that encourage the production of the protein are cpliechoters. Similar re-
gions either downstream of the coding region or relatively far upstream are
calledenhancersSequences that tend to prevent the production of a protein
are calledepressorsKarp’s chapter in this volume discusses how this com-
plex set of interactions can be modeled in knowledge-based systems.

Cells need to turn entire suites of genes on and off in response to many
different events, ranging from normal development to trying to repair dam-
age to the cell. The control mechanisms are responsive to the level of a prod-
uct already in the cell (for homeostatic control) as well as to a tremendous
variety of extracellular signals. Perhaps the most amazing activities in gene
regulation occur during development; not only are genes turned on and off
with precise timing, but the control can extend to producing alternative splic-
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ings of the nascent primary transcripts (as is the case in the transition from
fetal to normal hemoglobin).

5.4 Catalysis & Metabolic Pathways

The translation of genes into proteins, crucial as it is, is only a small portion
of the biochemical activity in a cell. Proteins do most of the work of manag-
ing the flow of energy, synthesizing, degrading and transporting materials,
sending and receiving signals, exerting forces on the world, and providing
structural support. Systems of interacting proteins form the basis for nearly
every process of living things, from moving around and digesting food to
thinking and reproducing. Somewhat surprisingly, a large proportion of the
chemical processes that underlie all of these activities are shared across a
very wide range of organisms. These shared processes are collectively re-
ferred to asntermediary metabolisnThese include theatabolicprocesses

for breaking down proteins, fats and carbohydrates (such as those found in
food) and theanabolicprocesses for building new materials. Similar collec-
tions of reactions that are more specialized to particular organisms are called
secondary metabolisrithe substances that these reactions produce and con-
sume are callethetabolites.

The biochemical processes in intermediary metabolism are almoat-all
alyzed reactionsThat is, these reactions would barely take place at all at
normal temperatures and pressures; they require special compounds that fa-
cilitate the reaction — these compounds are caldlystsor enzymes(It is
only partially in jest that many biochemistry courses open with the professor
saying that the reactions that take place in living systems are ones you were
taught were impossible in organic chemistry.) Catalysts are usually named
after the reaction they facilitate, usually with the added stdfie For ex-
ample, alcohol dehydrogenase is the enzyme that turns ethyl alcohol into ac-
etaldehyde by removing two hydrogen atoms. Common classes of enzymes
includedehydrogenasesynthetasegroteasegfor breaking down proteins),
decarboxylase¢removing carbon atoms)ransferase{moving a chemical
group from one place to anothekinases, phosphatas@slding or removing
phosphate groups, respectively) and so on. The materials transformed by cat-
alysts are calledubstratesUnlike the substrates, catalysts themselves are
not changed by the reactions they participate in. A final point to note about
enzymatic reactions is that in many cases the reactions can proceed in either
direction. That is, and enzyme that transforms substance A into substance B
can often also facilitate the transformation of B into A. The direction of the
transformation depends on the concentrations of the substrates and on the en-
ergetics of the reaction (see Mavrovouniotis’ chapter in this volume for fur-
ther discussion of this topic).

Even the basic transformations of intermediary metabolism can involve
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dozens or hundreds of catalyzed reactions. These combinations of reactions,
which accomplish tasks like turning foods into useable energy or compounds
are called metabolipathwaysBecause of the many steps in these pathways
and the widespread presence of direct and indirect feedback loops, they can
exhibit many counterintuitive behaviors. Also, all of these chemical reactions
are going on in parallel. Mavrovouniotis's chapter in this volume describes
an efficient system for making inferences about these complex systems.

In addition to the feedback loops among the substrates in the pathways,
the presence or absence of substrates can affect the behavior of the enzymes
themselves, through what is callatfosteric regulation. These interactions
occur when a substance binds to an enzyme someplace other than its usual
active site(the atoms in the molecule that have the enzymatic effect). Bind-
ing at this other site changes the shape of the enzyme, thereby changing its
activity. Another method of controlling enzymes is caltethpetitive inhibi-
tion. In this form of regulation, substance other than the usual substrate of
the enzyme binds to the active site of the enzyme, preventing it from having
an effect on its substrate.

These are the basic mechanisms underlying eucaryotic cells (and much of
this applies to bacterial and archaeal ones as well). Of course, each particular
activity of a living system, from the capture of energy to immune response,
has its own complex network of biochemical reactions that provides the
mechanism underlying the function. Some of these mechanisms, such as the
secondary messenger systamolving cyclic adenosine monophosphate
(cAMP) are widely shared by many different systems. Others are exquisitely
specialized for a particular task in a single species: my favorite example of
this is the evidence that perfect pitch in humans (being able to identify musi-
cal notes absolutely, rather than relative to each other) is mediated by a sin-
gle protein. The functioning of these biochemical networks is being unrav-
elled at an ever increasing rate, and the need for sophisticated methods to
analyze relevant data and build suitable models is growing rapidly.

5.5 Genetic Mechanisms of Evolution

In the beginning of this chapter, | discussed the central role that evolution
plays in understanding living systems. The mechanisms of evolution at the
molecular level are increasingly well understood. The similarities and differ-
ences among molecules that are closely related provide important informa-
tion about the structure and function of those molecules. Molecules (or their
sequences) which are related to one another are saidhtonii@ogousAl-

though genes or proteins that have similar sequences are often assumed to be
homologous, there are well known counterexamples dgerteergent evo-
lution. In these cases, aspects of very distantly related organisms come to re-
semble one another through very different evolutionary pathways. Unless
there is evidence to the contrary, it is usually safe to assume that macromole-
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cular sequences that are similar to each other are homologous.

The sources of variation at the molecular level are very important to un-
derstanding how molecules come to differ from each othetiyerge).Per-
haps the best known mechanism of molecular evolution ipdhe muta-
tion, or the change of a single nucleotide in a genetic sequence. The change
can be tdnserta new nucleotide, tdeletean existing one, or to change one
nucleotide into another. Other mechanisms include large scale chromosomal
rearrangements and inversions. An important kind of rearrangement is the
gene duplicationin which additional copies of a gene are inserted into the
genome. These copies can then diverge, so that, for example, the original
functionality may be preserved at the same time as related new genes evolve.
These duplication events can lead to the presenpsenfdogenesvhich are
quite similar to actual genes, but are not expressed. These pseudogenes pre-
sent challenges for gene recognition algorithms, such as the one proposed in
Searls chapter in this volume. Sexual reproduction adds another dimension to
the exchange of genetic material. DNA from the two parents of a sexually re-
producing organism undergoes a process caltedsoverwhich forms a
kind of mosaic that is passed on to the offspring.

Most mutations have relatively little effect. Mutations in the middle of
introns generally have no effect at all (although mutations at the ends of an
intron can affect the splicing process). Mutations in the third position of
most codons have little effect at the protein level because of the redundancy
of the genetic code. Even mutations that cause changes in the sequence of a
protein are often neutral, as demonstrated by Satail,(1989). Their ex-
perimental method involveshturation mutagenesishich explores are rel-
atively large proportion of the space of possible mutations in parallel. Neu-
tral mutations are the basis of genetic drift, which is the phenomena that
accounts for the differences between the DNA that codes for functionally
identical proteins in different organisms. This drift is also the basis for the
molecular clock, described above. Of course, some point mutations are
lethal, and others lead to diseases such as cystic fibrosis. Very rarely, a mu-
tation will be advantageous; it will then rapidly get fixed in the population,
as the organisms with the conferred advantage out reproduce the ones with-
out it. Diploid sexually reproducing organisms have two copies of each
gene (one from each parent), resulting in an added layer of complexity in
the effect of mutations. Sometimes the extra copy can compensate (or par-
tially compensate) for a mutation.

Molecular evolution also involves issues of selection and inheritance. In-
heritance requires that the genes from the parent be passed to the offspring.
DNA itself is replicated by splitting the double helix into two complimentary
strands and then extending a primer by attaching complementary nucleotides.
This process is modelled in detail Brutlagals chapter in this volume. The
molecular mechanisms underlying the whole complex process of cell divi-
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sion (i.e. the cell cycle) are strikingly conserved in eucaryotes, and knowl-

edge about this process is growing rapidly (see, e.g., Hartwell (1991) for a
review). Selection also occurs on factors that are only apparent on the molec-
ular level, such as the efficiency of certain reaction pathways (see, e.g.
Hochachka & Somero [1984]).

6. Sources of Biological Knowledge

The information in this chapter has been presented textbook style, with little
discussion of how the knowledge arose, or where errors might have crept in.
The purpose of this section is to describe some of the basic experimental
methods of molecular biology. These methods are important not only in un-
derstanding the source of possible errors in the data, but also because compu-
tational methods for managing laboratory activities and analyzing raw data
are another area where Al can play a role (see the chapters by Edwaids,

and Glasgowet al, in this volume). | will also describe some of the many
online information resources relevant to computational molecular biology
that are available.

6.1 Model Organisms: Germs, Worms, Weeds, Bugs & Rodents

The investigation of the workings of even a single organism is so complex as
to take many dedicated scientists many careers worth of time. Trying to
study all organisms in great depth is simply beyond the abilities of modern
biology. Furthermore, the techniques of biological experimentation are often
complex, time consuming and difficult. Some of the most valuable methods
in biological research are invasive, or require organisms to be sacrificed, or
require many generations of observation, or observations on large popula-
tions. Much of this work is impractical or unethical to carry out on humans.
For these reasons, biologists have selected a variety of model organisms for
experimentation. These creatures have qualities that make possible con-
trolled laboratory experiments at reasonable cost and difficulty with results
that can often be extrapolated to people or other organisms of interest.

Of course, research involving humans can be done ethically, and in some
areas of biomedical research, such as final drug testing, it is obligatory. Other
research methods involve kinds of human cells can be grown successfully in
the laboratory. Not many human cell types thrive outside of the body. Some
kinds of human cancer cells do grow well in the laboratory, and these cells
are an important vehicle for research.

Sometimes the selection of a new model organism can lead to great ad-
vances in a field. For example, the use of a particular kind of squid made
possible the understanding of the functioning of neurons because it contained
a motor neuron that is more than 10 times the size of most neural cells, and
hence easy to find and use in experiments. There are experimentally useful
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correlates of nearly every aspect of human biology found in some organism
or another, but the following six organisms form the main collection of mod-
els used in molecular biology:

E. coli The ubiquitous intestinal bacteriuEscherichia coliis a work-
horse in biological laboratories. Because it is a relatively simple organism
with fast reproduction time and is safe and easy to work Wittgoli has
been the focus of a great deal of research in genetics and molecular biology
of the cell. Although it is a Bacterium, many of the basic biochemical mech-
anisms ofE. coliare shared by humans. For example, the first understanding
of how genes can be turned on and off came from the study of a virus that in-
fects these bacteria (Ptashne, 19&7)coliis a common target for genetic
engineering, where genes from other organisms are inserted into the bacterial
genome then produced in quantiy.coliis now the basis of the internation-
al biotechnology industry, churning out buckets full of human insulin, the
heart attack drug TPA, and a wide variety of other substances.

SaccharomycesSaccharomyces cervesiae better known as brewer’s
yeast, and it is another safe, easy to grow, short generation time organism.
Other yeasts, such &hizosaccharomyces pomheg also used extensively.
Surprisingly, yeasts are very much like people in many ways. Unlike the bac-
terium E. coli, yeasts are eucaryotes, with a cell nucleus, mitochondria, a eu-
caryotic cell membrane, and many of the other cellular components and
processes found in most other eucaryotes, including people. Because these
yeasts are so easy to grow and manipulate, and because they are so biochemi-
cally similar to people, many insights about the molecular processes involved
in metabolism, biosynthesis, cell division, and other crucial areas of biology
have come from the investigation 8accharomycegSaccharomyces is a
genus name, which, when used alone, refers to all species that are within that
genus) Yeasts play another important role in molecular biology. One of the
crucial steps in sequencing large amounts of DNA is to be able to prepare
many copies of moderate sized pieces of DNA. An widely used method for
doing this is theyeast artificial chromosomg@r YAC), which is discussed
below.

ArabidopsisThe most important application of increased biological under-
standing is generally thought to be in medicine, and increased understanding
of human biology has indeed led to dramatic improvements in health care.
However, in terms of effect on human life, agriculture is just as significant. A
great deal of research into genetics and biochemistry has been motivated by
the desire to better understand various aspects of plant biology. An important
model organism for plants &rabidopsis thalianaa common weedAra-
bidopsismakes a good model because it undergoes the same processes of
growth, development, flowering and reproduction as most higher plants, but
it's genome has 30 times less DNA than corn, and very little repetitive DNA.

It also produces lots of seeds, and takes only about six weeks to grow to matu-
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rity. There are several other model organisms used to investigate botanical
guestions, including tomatoes, tobacco, carrots and corn.

C. elegan®One of the most exciting model organisms to emerge recently
has been the nematode wofaenorhabditis eleganghis tiny creature,
thousands of which can be found in a spadeful of dirt, has already been used
to generate tremendous insight about cellular development and physiology.
The adult organism has exactly 959 cells, and every normal worm consists of
exactly the same collection of cells in the same places doing the same thing.
It is one of the simplest creatures with a nervous system (which involves
about a third of its cells). Not only is the complete anatomy of the organism
known, but a complete cell fate map has been generated, tracing the develop-
mental lineage of each of each cell throughout the lifespan of the organism.
This map allows researchers to relate behaviors to particular cells, to trace
the effects of genetic mutations very specifically, and perhaps to gain insight
into the mechanisms of aging as well as development. A large, highly inte-
grated picture and text database of information about the cell fates, genetic
maps and sequences, mutation effects and other relevant information about
C. eleganss currently under construction at the University of Arizona.

D. melanogasteDrosophila melanogastea common fruit fly, has long
been a staple of classical genetics research. These flies have short generation
times, and many different genetically determined morphological characteris-
tics (e.g. eye color) that can readily be determined by visual inspection.
Drosophilawere used for decades in exploring patterns of inheritance; now
that molecular methods can be applied, they have proven invaluable for a va-
riety of studies of genetic expression and control. An important class of ge-
netic elements that regulate many other genes, in effect, specifying complex
genetic programs, were first discoverediosophilg these areas are called
homeoboxesMolecular genetics irosophilais also providing great in-
sights into how complex body plans are generated.

M. musculusMus musculuss the basic laboratory mouse. Mice are mam-
mals, and, as far as biochemistry is concerned, are practically identical to
people. Many questions about physiology, reproduction, functioning of the
immune and nervous systems and other areas of interest can only be
addressed by examining creatures that are very similar to humans; mice near-
ly always fit the bill. The similarities between mice and people mean also
that the mouse is a very complicated creature; it has a relatively large, com-
plex genome, and mouse development and physiology is not as regular or
consistent as that &. elegan®r Drosophila.Although our depth of under-
standing of the mouse will lag behind understanding of simpler organisms,
the comparison of mouse genome to human is likely to be a key step, both in
understanding their vast commonalities, and in seeing the aspects of our
genes that make us uniquely human.
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7. Experimental Methods

Molecular biologists have developed a tremendous variety of tools to address
guestions of biological function. This chapter can only touch briefly on a few
of the most widely used methods, but the terminology and a sense of the
kinds of efforts required to produce the data used by computer scientists can
be important for understanding the strengths and limitations of various
sources of data.

Imaging. The first understanding of the cellular nature of life came short-
ly after the invention of the light microscope, and microscopy remaines cen-
tral to research in biology The tools for creating images have expanded
tremendously. Not only are there computer controled light microscopes with
a wide variety of imaging modalities, but there are now many other methods
of generating images of the very small. The electon microscope offers ex-
tremely high resolution, although it requires exposing the imaged sample to
high vacuum and other harsh treatments. New technologies including the
Atomic Force Microscope (AFM) and the Scanning Tunnelling Microscope
(STM) offer the potential to create images of individual molecules. Biolo-
gists use these tools extensively.

Gel Electrophoresis.A charged molecule, when placed in an electric
field, will be accelerated; positively charged molecules will move toward
negative electrodes and vice versa. By placing a mixture of molecules of in-
terest in a medium and subjecting them to an electric charge, the molecules
will migrate through the medium and separate from each other. How fast the
molecules will move depends on their charge and their size—bigger mole-
cules see more resistance from the medium. The procedure, ebdted
trophoresisinvolves putting a spot of the mixture to be analyzed at the top of
a polyacrylamide or agarose gel, and applying an electric field for a period of
time. Then the gel is stained so that the molecules become visible; the stains
appear as stripes along the gel, and are cakeulls.The location of the
bands on the gel are proportional to the charge and size of the molecules in
the mixture (see Figure 4 for an example). The intensity of the stain is an in-
dication of the amount of a particular molecule in the mixture. If the
molecules are all the same charge, or have charge proportional to their size
(as, for example, DNA does) then electrophoresis separates them purely by
size.

Often, several mixtures are run simultaneously on a single gel. This al-
lows for easy calibration to standards, or comparison of the contents of dif-
ferent mixtures, showing, for example, the absence of a particular molecular
component in one. The adjacent, parallel runs are sometimes laaksdA
variation on this technique allows the sorting of molecules by a chemical
property called thésoelectric point which is related to its pK. A combina-
tion of the two methods, calle2D electrophoresiss capable of very fine
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Figure 4. This is an example of a gel electrophoresis run.. Each column was loaded
with a different mixture. The mixtures are then separated vertically by their charge
and size. The gel is then stained, producing dark bands where a molecule of a given
size or charge is present in a mixture. In this gel, the columns marked with a - are a
control group. The band marked with an arrow is filled only in the + columns.

distinctions, for example, mapping each protein in a cell to a usioon
two-space, the size of the spot indicating the amount of the protein. Although
there are still some difficulties in calibration and repeatability, this method is
potentially a very powerful tool for monitoring the activities of large bio-
chemical systems. In addition, if a desired molecule can be separated from
the mixture this way, individual spots or bands can be removed from the gel
for further processing, in a procedure caléatting.

Cloning. A group of cells with identical genomes are said telbeesof
one another. Unless there are mutations, a single cell that reproduces asexu-
ally will produce identical offspring; these clones are sometimes catlelfi a
line, and certain standardized cell lines, for example the HelLa cell line, play
an important role in biological research.

This concept has been generalize to cloning individual genes. In this case,
a piece of DNA containing a gene of interest is inserted into the genome of a
target cell line, and the cells are screened so that all of the resulting cells
have an identical copy of the desired genetic sequence. The DNA in these
cells is said to beecombinantand the cell will produce the protein coded
for by the inserted gene.

Cloning a gene requires some sophisticated technology. In order for a
cloned gene to be expressed, it must contain the appropriate transcription sig-
nals for the target cell line. One way biologists ensure that this will happen is
to put the new gene into a bacteriophage (a virus that infects bacteria), or a
plasmid (a circular piece of DNA found outside of the chromosome of bacte-
ria that replicates independently of the bacteria’s chromosomal DNA). These
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devices for inserting foreign DNA into cells are caNedttors.

In order to cut and paste desired DNA fragments into vectors, biologists
userestriction enzymesvhich cut DNA at precisely specified points. These
enzymes are produced naturally by bacteria as a way of attacking foreign
DNA. For example, the commonly used enzyBeoRI (from E. coli) cuts
DNA between the G and the A in the sequence GAATTC; these target se-
guences are calle@striction sites Everywhere a restriction site occurs in a
DNA molecule treated witlEcoR| the DNA will be broken. Restriction en-
zymes play many roles in biology in addition to making gene cloning
possible; a few others will be described below.

Both the insertion of the desired gene into the vector and the uptake of the
vector by the target cells are effective only a fraction of the time. Fortunately,
cells and vectors are small and it is relatively easy to grow a lot of them. The
process is applied to a population of target cells, and then the resulting popu-
lation is screened to identify the cells where the gene was successfully insert-
ed. This can be difficult, so many vectors are designed to facilitate screening.
One popular vectopBR322 contains a naturally occurring transcription
start signal and some antibiotic resistance genes, designed with conveniently
placed restriction sites. If this vector is taken up by the target cells, it will
confer resistance to certain antibiotics to them. By applying the anitbiotic to
the whole colony, the researcher can kill all the cells that did not get the
cloned gene. More sophisticated manipulations involving multiple antibiotic
resistances and carefully placed restriction sites can also be used to ensure
that the gene was correctly taken up by the vector.

There are many variations on these techniques for inserting foreign genes.
It is now possible to use simple bacteria to produce large amounts of almost
any isolated protein, including, for example, human insulin. Although it is a
more complex process, it is also possible to insert foreign genes into plants
and animals, even people. A variety of efforts are underway to use these tech-
nigues to engineer organisms for agriculture, medicine and other applications.
Not all of these applications are benign. One of the most successful early ef-
forts was to increase the resistance of tobacco plants to pesticides, and there
are clear military applications. On the other hand, these methods also promise
new approaches to producing important rare biological compounds inexpen-
sively (e.g. for novel cancer treatments or cleaning up toxic waste) and im-
proving the nutritional value or hardiness of agricultural products. The entire
field of genetic engineering is controversial, and there are a variety of controls
on what experiments can be done and how they can be done.

Hybridization and Immunological Staining. Biological compounds
can show remarkable specificity, for example, binding very selectively only
to one particular compound. This ability plays an important role in the labo-
ratory, where researchers can identify the presence or absence of a particular
molecule (or even a region of a molecule) in vanishingly small amounts.
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Antibodiesare the molecules that the immune system uses to identify and
fight off invaders. Antibodies are extremely specific, recognizing and bind-
ing to only one kind of molecule. Dyes can be attached to the antibody,
forming a very specific system for identifying the presence (and possibly
guantifying the amount) of a target molecule that is present in a system.

There is a conceptually related method for identifying very specifically
the presence of a particular nucleotide sequence in a macromolecule. The
complement to a single-stranded DNA sequence will bind quite specifically
to that sequence. One technique measures how similar two related DNA se-
guences are by testing how strongly the single-stranded versions of the mole-
cules stick to each other, bybridize The more easily they come apart, the
more differences there are between their sequences. It is also possible to at-
tach a dye or other marker to a specific piece of DNA (callpablag and
then hybridize it to a longer strand of DNA. The location along the strand
that is complementary to the probe will then be marked. There are many
variations on hybridization and immunological staining that are customized
to the needs of a particular experiment.

Gene Mapping and SequencingThe Human Genome Project is the ef-
fort to produce a map and then the sequence of the human genome. The pur-
pose of a genetic map is to identify the location and size of all of the genes of
an organism on its chromosomes. This information is important for a variety
of reasons. First, because crossover is an important component of inheritance
in sexually reproducing organisms, genes that are near each other on the
chromosome will tend to be inherited together. In fact, this forms the basis
for linkage analysiswhich is a technique that looks at the relationships be-
tween genes (or phenotypes) in large numbers of matings (in this context,
often calledcrosse} to identify which genes tend to be inherited together,
and are therefore likely to be near each other. Second, it is possible to clone
genes of known locations, opening up a wide range of possible experimental
manipulations. Finally, it is currently possible to determine the sequence of
moderate size pieces of DNA, so if an important gene has been mapped, it is
possible to find the sequence of that area, and discover the protein that is re-
sponsible for the genetic characteristic. This is especially important for un-
derstanding the basis of inherited diseases.

The existence of several different kinds of restriction enzymes makes pos-
sible a molecular method of creating genetic maps. The application of each
restriction enzyme (the process is callediges) creates a different collec-
tion of restriction fragmentgthe cut up pieces of DNA). By using gel elec-
trophoresis, it is possible to determine the size of these fragments. Using
multiple enzymes, together and separately, results in sets of fragments which
can be (partially) ordered with respect to each other, resulting in a genetic
map. Al techniques for reasoning about partial orders have been effectively
applied to the problem of assembling the fragments into a map (Letovsky &
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Berlyn, 1992). Thesgphysical mapdglivide a large piece of DNA (like a
chromosome) into parts, and and there is an associated method for obtaining
any desired part.

Restriction fragment mapping becomes problematic when applied to large
stretches of DNA, because the enzymes can produce many pieces of about
the same size, making the map ambiguous. The use of different enzymes can
help address this problem to a limited degree, but a variety of other tech-
nigues are now also used.

Being able to divide the genome into moderate sized chunks is a prerequi-
site to determining its sequence. Although there are several clever methods
for determining the sequence of DNA molecule, all of them are limited to a
resolution of well under a thousand basepairs at a time. In order to take this
sequencing ability and determine the sequence of large pieces of DNA, many
different overlapping chunks must be sequenced, and then these sequences
must be assembled. In order to accomplish this task, it is necessary to break
the DNA in an entire genome down into a set of more manageable sized
pieces. The ordering of these pieces must be known (so they can be reassem-
bled into a complete sequence), taken together the pieces must cover the en-
tire genome, and the same set of pieces must be accessible to many different
laboratories. This process is usually accomplished in several stages. The first
stage generates relatively large pieces caltaedigs Contigs are maintained
in cloned cell lines so that they can be reproduced and distributed. Often,
these pieces of DNA are made inteast artificial chromosomesr YACs
which can hold up to about a million basepairs of sequence each, requiring
on the order of 10,000 clones to adequately cover the entire human genome.
Each of these is then broken down into sets of smaller pieces, often in the
form of cosmidsA cosmid is a particular kind of bacteriophage (a virus that
infects bacteria) that is capable of accepting inserts of 30,000 or so basepairs.
The difficulties in generating and maintaining collections of clones that large
have led to alternative technologies for large scale sequencing.

One alternative involves a new technology based opdhenerase chain
reaction,or PCR. This mechanism was revolutionary becauase it made it
possible to rapidly produce huge amounts of a specific region of DNA, sim-
ply by knowing a little bit of the sequence around the desired region. PCR
exponentiallyamplifies(makes copies of) a segment of a DNA molecule,
given a unique pair of sequences that bracket the desired piece. First, short
sequences of DNA (calledligonucleotides or oligos) complementary to

*There are many interesting uses of this technology. For example, it gives law en-
forcement the ability to generate enough DNA for identification from vanishing small
samples of tissue. A more amusing application is the rumored use of PCR to spy on
what academic competitors are doing in their research. Almost any correspondence
from a competitor’s lab will contain traces of DNA which can be amplified by PCR to
identify the specific clones the lab is working with.
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each of the bracketing sequences are synthesized. Creating short pieces of
DNA with a specific sequence is routine technology, now often performed by
laboratory robots. These pieces are capiechers. The primers, the target
DNA and the enzyme DNA polymerase are then combined. The mixture is
heated, so that the hydrogen bonds in the DNA break and the molecule splits
into two single strands. When the mixture cools sufficiently, the primers
bond to the regions around the area of interest, and the DNA polymerase
replicates the DNA downstream of the primers. By using a heat resistant
polymerase from an Archaea species that lives at high temperatures, it is pos-
sible to rapidly cycle this process, doubling the amount of desired segment of
DNA each time. This technology makes possible the exponential
amplification of entire DNA molecules or any specific region of DNA for
which bracketing primers can be generdted.

In order to use PCR for genome mapping and sequencing, a collection of
unique (short) sequences spread throughout the genome must be identified
for use as primers. The sequences must be unique in the genome so that the
source of amplified DNA is unambiguous, and they have to be relatively
short so that they are easy to synthesize. The sites in the genome that corre-
spond to these sequences are catmience tagged sites STSsThe more
STSs that are known, the finer grained the map of the genome they provide.
Finding short, unique sequences even in 3xtp of DNA is not that
difficult; a simple calculation shows that most sequences of length 16 or so
can reasonably be expected to be unique in a genome of that size. An early
goal of the Human Genome Project is to generate a list of STSs spaced at ap-
proximately 100kbp intervals over the entire human genome. If it is possible
to find STSs that adequately cover the genome, it will not be necessary to
build and maintain libraries of 10,000 YACs and ten times as many cosmids.
Any region of DNA of interest can be identified by two STSs that bracket it.
Instead of having to maintain large clone collections, these STSs can be
stored in a database, and any researcher who needs a particular section of
DNA can synthesize the appropriate primers and use PCR to produce many
copies of just of that section.

Another issue that has been raised about the project to sequence the
genome is the need to know the sequences of all of the introns and other non-
coding regions of DNA. One way to address this issue is to target only cod-
ing regions for sequencing. The ability to find the sequences that a particular
cell is using to produce proteins at a particular point in time is also useful in
a variety of other areas as well. This information can be gleaned by gathering
the mRNAs present in the cytoplasm of the cell, and sequencing them. In-
stead of sequencing the mRNAs directly, biologists use an enzymerealled
verse transcriptaséo make DNA molecules complementary to the mRNAs
(calledcDNAs) and then sequence that DNA. Using PCR and other technolo-
gy, it is possible to capture at least portions of most of the mRNAs a cell is
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producing. By sequencing these cDNAs, researchers can focus their attention
on just the parts of the genome that code for expressed proteins.

Large scale attempts to sequence at least part of all of the cDNAs that can
be produced from brain tissue have resulted in partial sequences for more
than 2500 new proteins in a very short period of time (Adanal, 1992).

These sequences called ESTs, dapressed sequence taggn be used as
PCR primers for future, more detailed experiments. This work has created
controversy because of the ensuing attempt by the National Institutes of
Health to patent the EST sequences.

Crystallography and NMR. Until the relationship between protein se-
guence and structure is more fully understood, the sequences produced by
genome projects will provide only part of the biochemical story. Additional
information about protein structure is necessary to understand how the pro-
teins function. This structural information is at the present primarily gathered
by X-ray crystallographyIn order to determine the structure of a protein in
this manner, a very large, pure crystal of the protein must be grown (this
process can take years, and may never succeed for certain proteins). Then the
X-ray diffraction pattern of the crystal is measured, and this information can
be used indirectly to determine the positions of the atoms in the molecule.
Glasgow,et al’s chapter in this volume describes this process in more detail.
Because of the difficulties in crystallography, relatively few structures are
known, but the number of new structures is growing exponentially, with a
doubling time of a hit over two years.

A promising alternative to crystallography for determining protein struc-
ture is multi-dimensionahuclear magnetic resonancer NMR. Although
this process does not require the crystallization of the protein, there are tech-
nical difficulties in analyzing the data associated with large molecules like
proteins.Edwards, et a chapter in this volume describes some of the chal-
lenges. Both crystallography and NMR techniques result in static protein
structures, which are to some degree misleading. Proteins are flexible, and
the patterns of their movement are likely to play an important role in their
function. Although NMR has the potential to provide information about this
facet of protein activity, there is very little data available currently.

7.1 Computational Biology

In the last five years, biologists have come to understand that sharing the
results of experiments now takes more than simple journal publication. In the
1980s, many journals were overwhelmed with papers reporting novel se-
guences and other biological data. Paper publications of sequences are hard
to analyze, prone to typographical errors, and take up valuable journal space.

*Researchers without internet access can contact NCBI by writing to NCBI/National
Library of Medicine/Bethesda, MD 20894 USA or calling +1 (301) 496-2475.
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Databases were established, journals began to require deposition into the
databases before publication, and various tools began to appear for managing
and analyzing the databases.

When Doolittle, et al (1983) used the nascent genetic sequence database
to prove that a cancer causing gene was a close relative of a normal growth
factor, molecular biology labs all over the world began installing computers
or linking up to networks to do database searches. Since then, a bewildering
variety of computational resources for biology have arisen. These databases
and other resources are a valuable service not only to the biological commu-
nity, but also to the computer scientist in search of domain information.

There is a database of databases, listing these resources which is main-
tained at Los Alamos National Laboratory. It is called LiMB(Lawton, Burks
& Martinez, 1989), and contains descriptions, contacts and access methods
for more than 100 molecular biology related databases. It is a very valuable
tool for tracking down information. Another general source for databases and
information about them is the National Center for Biotechnology Informa-
tion (NCBI), which is part of the National Library of Medicine. Many data-
bases are available via anonymous ftp from the NCBI server,
ncbi.nim.nih.gov.

A few of the databases that may be of particular interest to computer sci-
entists are described here. There are several databases that maintain genetic
sequences, and they are increasingly coordinated. They are Genbank (Moore,
Benton & Burks, 1990), the European Molecular Biology Laboratory nu-
cleotide sequence database (EMBL) (Hamm & Cameron, 1986), and the
DNA Database, Japan (DDBJ) (Miyazawa, 1990). NCBI will also provide a
sequence database beginning in 1992. The main protein sequence database is
the Protein Identification Resource (PIR) (George, Barker & Hunt, 1986).
NCBI also provides a non-redundant combination of protein sequences from
various sources (including translations of genetic sequences) in its NRDB.

Several databases contain information about three dimensional structures of
molecules. The Protein Data Bank (PDB) maintained by Brookhaven National
Laboratory, contains protein structure data, primarily from crystallographic
data. BioMagRes (BMR) is a database of NMR derived data about proteins, in-
cluding three dimensional coordinates, that is maintained at the University of
Wisconsin, Madison (Ulrich, Markley & Kyogoku, 1989). CARBBANK, con-
tains structural information for complex carbohydrates (Doubet, Bock, Smith,
Albersheim & Darvill, 1989). Chemical Abstracts Service (CAS) Online Reg-
istry File is a commercial database that contains more than 10 million chemical
substances, many with three dimensional coordinates and other useful informa-
tion. The Cambridge Structural Database contains small molecule structures,
and is available to researchers at moderate charge.

Genetic map databases (GDB), as well as a database of inherited human
diseases and characteristics (OMIM) are maintained at the Welch Medical



44 ARTIFICIAL INTELLIGENCE & M OLECULAR BloLOGY

Library at Johns Hopkins University. To get access to these databases, send
email to help@welch.jhu.edu. Other genetic map databases are available for
many of the model organisms listed above; consult LiMB for more informa-
tion about them.

There is a database of information about compounds involved in interme-
diary metabolism called CompoundKB, developed by Peter Karp that is
available from NCBI. This database is available in KEE knowledge base
form as well as several others, and there is associated LISP code which
makes it attractive for artificial intelligence researchers; see Karp’s and
Mavrovouniotis’s chapters in this volume for possible applications of the
knowledge base.

Finally, one of the most important computer-based assets for a computer
scientist interested in molecular biology information is the bulletin board
system calledionet. This bboard is available through usenet as well as by
electronic mail. The discussion groups include computational biology, infor-
mation theory and software, as well as more than 40 other areas. Bionet is an
excellent source for information and contacts with computationally sophisti-
cated biologists.

8. Conclusion

Al researchers have often had unusual relationships with their collabora-
tors. “Experts” are somehow “knowledge engineered” so that what they
know can be put into programs. Biology has a long history of collaborative
research, and it does not match this Al model. Computer scientists and biolo-
gists often have differing expectations about collaboration, education, con-
ferences and many other seemingly mundane aspects of research. In order to
work with biologists, Al researchers must understand a good deal about the
domain and find ways to bridge the gap between these rather different scien-
tific cultures.

This brief survey of biology is intended to help the computer scientist get
oriented and understand some of the commonly used terms in the domain.
Many more detailed, but still accessible books are listed in the references. |
find this material fascinating. Not only is it interesting as a domain for Al re-
search, but it provides a rich set of metaphors for thinking about intelligence:
genetic algorithms, neural networks and Darwinian automata are but a few of
the computational approaches to behavior based on biological ideas. There
will, no doubt, be many more.
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CHAPTER

2

The Computational Linguistics
of Biological Sequences

David B. Searls

1 Introduction

Shortly after Watson and Crick’s discovery of the structure of DNA, and at
about the same time that the genetic code and the essential facts of gene ex-
pression were being elucidated, the field of linguistics was being similarly rev-
olutionized by the work of Noam Chomsky [Chomsky, 1955, 1957, 1959,
1963, 1965]. Observing that a seemingly infinite variety of language was avail-
able to individual human beings based on clearly finite resources and experi-
ence, he proposed a formal representation of the rulggntaxof language,
called generative grammar, that could provide finite—indeed,
concise—characterizations of such infinite languages. Just as the break-
throughs in molecular biology in that era served to anchor genetic concepts in
physical structures and opened up entirely novel experimental paradigms, so
did Chomsky’s insight serve to energize the field of linguistics, with putative
correlates of cognitive processes that could for the first time be reasoned about
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axiomatically as well as phenomenologically. While Chomsky and his follow-
ers built extensively upon this foundation in the field of linguistics, generative
grammars were also soon integrated into the framework of the theory of com-
putation, and in addition now form the basis for efforts of computational lin-
guists to automate the processing and understanding of human language.

Since it is quite commonly asserted that DNA is a richly-expressise
guagefor specifying the structures and processes of life, also with the poten-
tial for a seemingly infinite variety, it is surprising that relatively little has
been done to apply to biological sequences the extensive results and methods
developed over the intervening decades in the field of formal language theory.
While such an approach has been proposed [Brendel and Busse, 1984], most
investigations along these lines have used grammar formalisms as tools for
what are essentially information-theoretic studies [Ebeling and Jimenez-Mon-
tano, 1980; Jimenez-Montano, 1984], or have involved statistical analyses at
the level of vocabularies (reflecting a more traditional notion of comparative
linguistics) [Brendel et al., 1986; Pevzner et al., 1989a,b; Pietrokovski et al.,
1990]. Only very recently have generative grammars for their own sake been
viewed as models of biological phenomena such as gene regulation [Collado-
Vides, 1989a,b, 1991a], gene structure and expression [Searls, 1988], recom-
bination [Head, 1987] and other forms of mutation and rearrangement [Searls,
1989a], conformation of macromolecules [Searls, 1989a], and in particular as
the basis for computational analysis of sequence data [Searls, 1989b; Searls
and Liebowitz, 1990; Searls and Noordewier, 1991].

Nevertheless, there is an increasing trend throughout the field of computa-
tional biology toward abstracted, hierarchical views of biological sequences,
which is very much in the spirit of computational linguistics. At the same
time, there has been a proliferation of software to perform various kinds of
pattern-matching search and other forms of analysis, which could well
benefit from the formal underpinnings that language theory offers to such en-
terprises. With the advent of very large scale sequencing projects, and the re-
sulting flood of sequence data, such a foundation may in fact prove essential.

This article is intended as a prolegomenon to a formally-based computa-
tional linguistics of biological sequences, presenting an introduction to the
field of mathematical linguistics and its applications, and reviewing and ex-
tending some basic results regarding structural and functional phenomena in
DNA and protein sequences. Implementation schemes will also be offered,
largely deriving from logic grammar formalisms, with a view toward practi-
cal tools for sequence analysis.

2 Formal Language Theory

This section will provide a compact but reasonably complete introduction
to the major results of formal language theory, that should allow for a basic
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understanding of the subsequent sections by those with no background in
mathematical linguistics. Proofs will be omitted in this section; some will be
offered later as regards biological sequences, and will use a range of proof
techniques sufficient to demonstrate the basic methodologies of the field, but
by and large these will be simple and by mathematical standards “semi-for-
mal.” Readers interested in further studies along these lines are encouraged
to consult textbooks such as [Sudkamp, 1988; Hopcroft and Ullman, 1979;
Harrison, 1978] (in order of increasing difficulty). Those already familiar
with the subject area should skip this section.

2.1 The Formal Specification of Languages

Formally, alanguageis simply a set oftringsof characters drawn from
somealphabet where the alphabet is a set of symbols usually denot&d by
One such language would be simply the sealbtrings over an alphabet
2. ={0,1}; this “maximal” language is indicated by the use of an asterisk, e.g.

s*={0,1y = { & 0, 1, 00, 01, 10, 11, 000, 001 } (1)

Here, thee represents thempty stringor string of length zero; the set con-
taining €, however, should not be confused with the emptysefhe chal-
lenge of computational linguistics is to find concise ways of specifying a
given (possibly infinite) languageJY*, preferably in a way that reflects
some underlying model of the “source” of that language. We can use infor-
mal descriptions that make use of natural language, such as in the following
example:

La:{ w({0,1}* | w begins with a 0 and contains at least or}e 1(2)

(The vertical bar notation is used to define a set in terms of its properties; this
specification would be read “the set of all strimgsef 0's and 1’ssuch that
eachw begins with a 0 and . . .”) However, properties expressed in natural
language are typically neither precise enough to allow for easy mathematical
analysis, nor in a form that invites the use of computational support in deal-
ing with them. On the other hand, simply exhaustively enumerating lan-
guages such as the example in (2) is also clearly ineffective—in fact, impos-
sible:

L,={ 01, 001, 010, 011, 0001, 0010, 0011, 0160} ©)

The remainder of this section will examine formal methods that have been
used to provide finite specifications of such languages.

2.1.1 Regular Expressions and Language# widely-used method of
specifying languages is by way mfgular expressionsyhich in their mathe-
matically pure form use only three basic operations. These operations are
given below, using a notation in which a regular expression is given in bold
type, and the language “generated” by that expression is derived by the ap-
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plication of a functior. (defined recursively in the obvious way):

(i) concatenation denoted by an infix operator,’ or more often by
simply writing symbols in juxtaposition, e.g(01) :{01} ;

(i) disjunction (or logical OR), denoted in this case by the infix opera-
tor '+, e.g.L(0+]) :{0,1}; and

(i) Kleene star, denoted by a postfix superscript,‘represents the set
containing zero or more concatenated instances of its argument, e.g.
L(0*)={ «, 0, 00, 000, 0000;" }.

The latter operation is also known as thesureof concatenation. Note the
connection between the definition of Kleene star and our previous use of the
asterisk:

>* = L((0+1)%) for ¥ ={0,1} 4)
One additional non-primitive operator, a postfix superscfipts used to

specify one or more occurrences of its argument. This ipdbitive closure
of concatenation, defined in terms of concatenation and Kleene star as

L(0%) =L(00%) ={ 0, 00, 000, 0000, - } (5)

The language from our running example of (2) can now be described
using any of several regular expressions, including

L= L(00*1(0+1)%) (6)

From this point, we will dispense with th¢) notation and let the regular
expression standing alone denote the corresponding language. Any such lan-
guage, that can be described by a regular expression, will be cedigalar
language(RL)".

2.1.2 Grammars.Such regular expressions have not only found wide use
in various kinds of simple search operations, but are also still the mainstay of
many biological sequence search programs. However, it is a fact that many
important languages simply cannot be specified as regular expressions, e.g.

{ onin|[n=1} @)
where the superscript integers denote that number of concatenated symbols,
so that (7) is the set of all strings beginning with any non-zero number of 0’s
followed by an equal number of 1's. This shortcoming of regular expressions
for language specification can be remedied through the use of more powerful
representations, callegrammars Besides a finite alphabgt of terminal
symbols, grammars have a finite set of “temporargihterminalsymbols
(including a speciadtart symbol, typicallyS), and a finite set afulesor pro-
ductions the latter use an infix=’ notation to specify how strings contain-
ing nonterminals may be rewritten by expanding those embedded nontermi-



SEARLs 51

nals (given on the left-hand side of the arrow) to new substrings (given on
the right-hand side). For instance, a grammar specifying the langyade
(2) can be written:

S . 0A B_ OB
A - 0A B_ 1B (8)
A_ 1B B- ¢

Note that nonterminals are traditionally designated by capital letters. A
derivation denoted by an infix3 ’, is a rewriting of a string using the rules
of the grammar. By a series of derivations fr8to strings containing only
terminals, an element of the language is specified, e.g.

SO OAO O0CAD 001B 0O 001080 00101B 0O 00101 9)

Often there will be multiple nonterminals in a string being derived, and so
there will be a choice as to which nonterminal to expand; when we choose
the leftmost nonterminal in every case, we say that the seriekefignast
derivation.

2.1.3 Context-Free LanguagesGrammars such as that of (8), whose
rules have only single nonterminals on their left-hand sides, are calted
text-free The corresponding languages, i.e. those that can be generated by
any such grammar, are calledntext-free languagg€FLs); it happens that
they include the RLs and much more. For example, the language of (7) is
specified by a grammar containing the following productions:

S- 0A A - 0AL Al (10)

Many other grammars can be used to describe this language, but no regu-
lar expression suffices. Another classic context-free (and not regular) lan-
guage is that opalindromes which in this case refer to “true”
palindromes—strings that read the same forward and backward—rather than
the biological use of this word to describe dyad symmetry (see section 2.4.1).
We can denote such a language (for the case of even-length strings over any
alphabet) as

{ wwR | wos*} (11)

for any givenZ, where the superscriftdenotes reversal of its immediately
preceding string argument. Such languages can be specified by context-free
grammars like the following, fa¥ ={0,1}:

S-0s0|1s1|e (12)

(Note the use of the vertical bar to more economically denote rule disjunc-
tion, i.e. multiple rules with the same left-hand side.) Thus, context-free
grammars are said to be “more powerful” than regular expressions—that is,
the RLs are a proper subset of the CFLs.
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Figure 1. A Finite State Automaton

2.1.4 Automata.Grammars are intimately related to concepitnathines
or automatawhich can serve as language recognizers or generators. For ex-
ample, regular languages are recognized and generatfditbystate au-
tomata(FSASs), which are represented as simple directed graphs, with distin-
guished starting and final nodes, and directed arcs labelled with terminal
symbols that are consumed (if the machine is acting as a recognizer) or pro-
duced (if the machine is being used to generate a language) as the arc is tra-
versed.

Figure 1 shows an FSA which again expresses the langyaj€2). The
starting node is at the left, and a final node is at the right. It can be seen that
it corresponds closely to the “operation” of the regular expression given in
(6). In fact, any such regular expression can be expressed as an FSA with a
finite number of nodes atates and vice versa, so that the languages recog-
nized by FSAs correspond exactly to the regular languages.

More sophisticated machines are associated with more powerful lan-
guages. For example, by adding a limited memory capability in the form of a
stackor simple pushdown store, we can crgatishdown automatéPDA)
that recognize context-free languages. Figure 2 shows a PDA which recog-
nizes the language of (7). After consuming a 0, the machine enters a loop in
which it pushes some symbol (typically drawn from a separate alphabet) on
the stack for each additional O it consumes. As soon as a 1 is recognized, it
makes a transition to another state in which those symbols are popped off the
stack as each additional 1 is consumed. The stack is required to be empty in a
final state, guaranteeing equal numbers of O's and 1's. (As before, it is in-
structive to note how the PDA compares to the grammar of (10).) Once
again, it can be shown that PDAs recognize all and only the CFLs.

More elaborate memory schemes can certainly be used in such machines,
leading us to ask whether they can be made to recognize additional languages,
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push x

pop X

[<[x]x]

>O 0 i 1 Q

Figure 2. A Pushdown Automaton

and whether there are correspondingly more powerful grammar formalisms.
2.1.5 Context-Sensitive Languagedndeed, even CFLs do not include
some apparently simple languages, such as:

{ on1n2n | n21} { oi1i2izi | ij=1} (13)
Note the similarity of these languages to (7), wliéch CFL. We can intu-
it why a PDA could not recognize (13a), for instance, by noting that the stack
would have to be emptied in the course of recognizing the string of 1's, leav-

ing no way to “count” the 2's. Another well-known class of non-context-free
languages are tteopy languages
{ ww | woz*} (14)

However, by relaxing our restriction and allowing more than one symbol
on the left-hand sides of grammar rules (but always including at least one
nonterminal), all these languages are encompassed. Such a grammar will be
calledcontext-sensitivé the left-hand side of each rule is not longer than its
right-hand side. Note that this effectively excludes languages conta&ning
(such as (14)), since any rule derivinwould necessarily have a right-hand
side shorter than its left-hand side; we will often supplement the languages
specified by such grammars by allowigygor purposes of comparison. The
corresponding context-sensitive languages (CSLs), augmented where neces-
sary withe, properly contain the CFLs as well as the examples in (13) and
(14). For instance, a grammar specifying (13a) is as follows:

S . 0SBC 0B - 01 CB - BC
S. 0BC 1B - 11 C-2 (15)

This grammar specifies (13a) via sequences of derivations like the follow-
ing. Note how in the second line the context-sensitive rule alRsvio tra-
verseC's leftward to their final destinations:
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SO 0SBCO 00SBCBCL 000BCBCBCL 0001CBCBC
O 0001BCCBCO 00011CCBCO 0001i1CBCCO 00011BCCC (16)
0 000111CCCO 000111Z2CQ0O 00011122 [0 000111222

The machines associated with CSLs are cdifezhr-bounded automata,
which can move iritherdirection on the input, and whose memory scheme
consists of the ability to overwrite symbols on the input (but not beyond it).
The requirement that each rule’s right-hand side be at least as long as its left-
hand side ensures that strings produced by successive derivations never grow
longer than the final terminal string, and thus exceed the memory available to
the automaton.

2.2 The Chomsky Hierarchy and Subdivisions

If there is no constraint on the number of symbols on the left hand sides of
rules, the grammar is callathrestricted and the corresponding languages,
called recursively enumerablecontain the CSLs and much more. The au-
tomaton corresponding to recursively enumerable languages is, in fact, the
Turing machine itself, which establishes an important link to general algo-
rithmic programming.

This completes the bas@€homsky hierarchgf language families, which
are related by set inclusion (ignoriajgas follows:

regularld context-free] context-sensitivél unrestricted a7

Care must be taken in interpreting these set inclusions. WhiketbéRLs
is a subset of the CFLs, since any RL can be expressed with a context-free
grammar, it is also the case that any CFL (or indeed any language at all) is a
subset of an RL, namely*. That is, by ascending the hierarchy we are aug-
menting the range of languages we can express by actoalbyraining2*
in an ever wider variety of ways.
The Chomsky hierarchy has been subdivided and otherwise elaborated
upon in many ways. A few of the important distinctions will be described.
2.2.1 Linear LanguagesWithin the CFLs, we can distinguish theear
CFLs, which include examples (7) and (11) given above. The linear CFLs
are those that can be expressed by grammars that never spawn more than one
nonterminal, i.e. those in which every rule is of the form

A - uBv or Ao w (18)

whereA andB are any nonterminal andv,wJ>*. The machines correspon-
ding to linear CFLs arene-turn PDAswhich are restricted so that in effect
nothing can be pushed on the stack once anything has been popped.

If eitheru or v is always empty in each rule of the form (18a), the result-
ing grammars and languages are cakdtlinear or right-linear, respective-
ly, and the corresponding languages are RLs. For example, the lariguage
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of (2), which was first specified by regular expressions and is thus regular, is
also described by the right-linear grammar of (8). In one sense, then, the lin-
ear CFLs can be thought of as the simplest CFLs that are not regular.

2.2.2 Deterministic and Nondeterministic LanguagesOther
classifications depend on the nature of derivations and the behavior of the au-
tomata that produce or recognize languages. One such distinction is that be-
tweendeterministicandnondeterministidanguages and automata. Essential-
ly, a deterministic automaton is one for which any acceptable input in any
given state of the automaton will always uniquely determine the succeeding
state. A deterministic language, in turn, is one that can be recognized by
some deterministic machine. The FSA of Figure 1 is deterministic, since no
node has more than one arc leaving it with the same label. In a nondetermin-
istic FSA, there might be more than one arc labelled “0” leaving a node, for
instance, and then a choice would have to be made; in attempting to recog-
nize a given input, that choice might later prove to be the wrong one, in
which case a recognizer would somehow have to backtrack and try the alter-
natives.

The PDA of Figure 2 is also deterministic, and thus the language of (7) is
a deterministic CFL. This can be seen from the fact that the automaton mere-
ly has to read O’s until it encounters its first 1, at which point it begins pop-
ping its stack until it finishes; it need never “guess” where to make the
switch. However, the palindromic language of (11) is a nondeterministic
CFL, since the automaton has to guess whether it has encountered the center
of the palindrome at any point, and can begin popping the stack.

Any nondeterministic FSA may be converted to a deterministic FSA,
though obviously the same cannot be said of PDAs. Thus, the deterministic
subset of CFLs properly contains the RLs.

2.2.3 Ambiguity. Another useful distinction within the CFLs concerns the
notion ofambiguity Formally, we say that a grammar is ambiguous if there
is some string for which more than one leftmost derivation is possible. As it
happens all of the example grammars we have given are unambiguous, but it
is easy to specify ambiguous grammars, e.g.

S.S0s|1 (19)
for which it can be seen that the string ‘10101’ has two leftmost derivations:
SO S0SO 10S0 10S0SCO 1010S0O 10101

SO S0SO S0s0SO 10s0SsO 1010S0 10101
However, the language specified by this grammar,

{ @oy1|n=0} (21)

can in fact also be specified by a different grammar that is unambiguous:

(20)
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S-10s|1 (22)

Can all languages be specified by some unambiguous grammar? The an-
swer is no, and languages that cannot be generated by any such grammar are
called inherently ambiguousAn example is the following CFL (not to be
confused with the CSL of (13a)):

{ oi1i2k |i=j or j=k, wherei,j,k=1} (23)

Intuitively, it can be seen that this language will contain strings, e.g. those
for whichi=j=k, that can be parsed in more than one way, satisfying one or
the other of the grammar elements that impose constraints on the super-
scripts. Inherently ambiguous languages are necessarily hondeterministic; a
PDA recognizing (23), for instance, would have to guess ahead of time
whether to push and pop the stack on the 0's and 1's, respectively, or on the
1'sand 2’s.

2.2.4 Indexed LanguagesThe CSLs can also be subdivided. We choose
only one such subdivision to illustrate, that of théexed language@Ls),
which contain the CFLs and are in turn properly contained within the CSLs,
except that ILs may contain They are specified by indexed grammars,
which can be viewed as context-free grammars augmented with indices
drawn from a special set of symbols, strings of which can be appended to
nonterminals (which we will indicate using superscripts). Rules will then be
of the forms

A= a or A - BX or AX S a (24)

wherea is any string of terminals and nonterminals, and x is a single index
symbol. Now, whenever a rule of form (24a) is applied to expand a nonter-
minal A in the string being derived, all the indices currently attachedito
that input string are carried through and attached to each of the nonterminals
(but not terminals) i@ when it is inserted in place @fin the input string.
For rules of form (24b), wheA is expanded t®, x is added to the front of
the string of indices oB in the terminal string being derived. Finally, for
rules of form (24c), the index x at the head of the indices followirgyre-
moved, before the remainder of the indicesA@are distributed over the non-
terminals ina, as before.

This rather complicated arrangement may be clarified somewhat with an
example. The following indexed grammar specifies the language of (13a):

S_ TS A - 0A A0
T_Tt Bt 1B BS. 1 (25)
T - ABC d-.2c CS.2

Note that, but for the indices, this grammar is in a context-free form,
though (13a) is not a CFL. Under this scheme, indices behave as if they were
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on stacks attached to nonterminals, as may be seen in the following sample
derivation (compare (16)):

SO TSSO TisO Ttits Altsgttsctts g gAlspttsctts
[ 00ASBUSCHtS [] 000BHSCHS [ 0001BISCHtS 1 00011BSCHtS  (26)
0 00011iCtts 0 000111ZtS 0001112ZS0 000111222

Several types of machines are associated with ILs, includiated stack
automata whose name suggests a view of ILs as allowing stacks within
stacks.

2.3 Lindenmayer Systems

Not all research in formal linguistics falls within the traditions of the
Chomsky hierarchy and grammars in the form we have presented. One other
important area will be described here, thatiodenmayer systenus L-sys-
tems.These differ from the grammars above in that they have no nontermi-
nals, and instead a derivation is accomplished by rewgtiegyterminal in
a string simultaneously, according to production rules which of course have
single terminals on the left and strings of terminals on the right. Actually,
this describes the simplest, context-free form of these grammars, called a
OL-system, an example of which would be the following:

0-1 1L 01 (27)
Beginning with a single 0, this produces a series of derivations as follows:

00 10 010 1010 011010 101011010 0110110101101 -+ (28)

The language of an L-system, called latanguage is the set of all
strings appearing in such a derivation chain. In this case, the language
specified contains strings whose lengths are Fibonacci numbers, since in fact
each string is simply the concatenation of the two previous strings in the se-
ries.

The OL-languages, as it happens, are contained within the ILs, and thus
within the CSLs (witre), though they contain neither CFLs nor RLs in their
entirety. Context-sensitive L-languages, on the other hand, contain the RLs
but are only contained within the recursively enumerable languages
[Prusinkiewicz and Hanan, 1989].

2.4 Properties of Language Families

Much of the content of formal language theory is concerned with examin-
ing the properties of families of languages—how they behave when various
operations are performed on them, and what kinds of questions can be effec-
tively answered about them. This section will give an overview of these
properties.
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2.4.1 Closure PropertiesOne such area of investigation is thatctd-
sureproperties of families of languages, that is, whether applying various op-
erations to languages leaves the resulting language at the same level in the
Chomsky hierarchy. For example, all four of the language families in the hi-
erarchy, and the ILs as well, aclbosed under unigrwhich means that, for
instance, the union of any CFL with any other CFL will always yield another
CFL. Note, however, that the deterministic CFLS are not closed under union;
consider the following two languages:

{ oi1i2i]ij=1} { oi12i]ij=1} (29)

Both these languages are deterministic, by reasoning similar to that given
in a previous section for the language of (7). However, their union can be
seen to be equivalent to the language of (23), which is inherently ambiguous
and thus nondeterministic (though it is still a CFL).

The RLs, CFLs, ILs, CSLs, and recursively enumerable languages are all
closed under concatenation (that is, the concatenation of each string in one
language to each string in another, dendieth), as well as under the clo-
sures of concatenation (denotédandL”, the only difference being that the
former containg whether or noL does). All are closed under intersection
with any RL, e.g. the set of all strings occurring in both a given CFL and a
given RL will always be a CFL. This fact will prove to be an important tool
in proofs given below. CFLs, however, are not closed under intersection with
each other, as can be seen from the fact that intersecting the two CFLs of
(29) produces the CSL of (13a). The same is true of ILs, though CSLs and
recursively enumerable languages closed under intersection.

Another operation that will prove important in many proofs is that of
homomorphismA homomorphism in this case is a function mapping strings
to strings, that is built upon a function mapping an alphabet to strings over a
(possibly different) alphabet, by just transforming each element of a string, in
place, by the latter function. For a functioion an alphabeX to extend to a
homomorphism on strings over that alphabet, it is only necessary pinat it
serve concatenationhat is, that it satisfy

h(u)-h(v) =h(uv) foru,vO>*, and h(g) =¢ (30)

For instance, given a homomorphignbased on the functions(0)=¢,
$(1)=00, andd(2)=¢(3)=1, we would havep(123031200)=00111001. All
four language families in the Chomsky hierarchy (and ILs as well) are closed
under homomorphisms applied to each of the strings in a language, except
that if the homomorphism maps any alphabetic elemerdsttee CSLs are
no longer closed. Perhaps more surprising is the finding that they are all also
closed undeinversehomomorphisms, including those which thus ngap
back to alphabetic elements. Siftteeed not be one-to-oné, (for example,
is not),h™1 may not be a unique function; thus inverse homomorphisms must
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map strings to sets of strings, and in fact both homomorphisms and inverse
homomorphisms are notationally extended to themselves apply to languages,
e.g.h(L). Note that, since is a substring of any string at any point in that
string, one can use the inverse of a homomorphism mapping lettees ta
means to insert any number of letters randomly into strings of a language,
e.g.9-1(001)={12, 13, 012, 102, 120, 0102; }; yet, by the closure proper-

ty, languages thus enlarged (even CSLs) remain at the same level in the
Chomsky hierarchy.

We can employ an even more flexible means for substituting elements in
languages, based on FSAs.gAneralized sequential machi(@SM) is an
FSA whose arcs are labelled, not only with symbols from the alphabet which
are expected on the input, but also with correspondirtgut symbols to
which the input symbols are converted by the action of the automaton. Thus,
a GSM arc might be labelled “0/1” to indicate that a O read on the input pro-
duces a 1 on the output. (A useful example of a GSM will be encountered in
section 2.5.3.) All four Chomsky hierarchy language families and ILs as well
are closed under both GSM and inverse GSM mappings, though again the
CSLs are not closed for GSMs with arcs that ha&s their output.

We note in passing that OL-systems, in keeping with their other distinc-
tions from the Chomsky hierarchy, are closed under none of the operations
described thus far. However, being ILs, we know that, for instance, the union
of two OL-languages will be an IL, and the intersection will be a CSL (ex-
ceptingeg).

2.4.2 Decidability Properties.There are many questions that may be
asked about languages, not all of which can be answered in the most general
case by any algorithmic method—that is, there are cartadecidableprob-
lems related to languages. For example, we noted above that the intersection
of two CFLs need not be a CFL, but of coursedtybe; it happens that de-
termining whether it is or not for arbitrary CFLs is undecidable. It is unde-
cidable whether one language is a subset of another, or even equal to another,
for languages that are beyond regular; the same is the case for determining if
two languages are pairwise disjoint (i.e. non-overlapping). Surprisingly, even
the question of whether a language is empty is decidable only up through the
ILs.

Perhaps the most basic question we can ask about languages is whether a
given string is a member of a given language. Luckily, this question is decid-
able for all but the recursively enumerable languages, i.e. those specified by
unrestricted grammars. This latter should not be too surprising, since in gen-
eral Turing machines cannot be guaranteed to halt on arbitrary input.

Closure properties, and even more so decidability properties, suggest a
motivation for studying languages in these terms, and wherever possible for
using grammars to specify them that are as low on the Chomsky hierarchy as
possible. Simply put, there is a marked tradeoff between the expressive
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power required for languages and their general “manageability.” Nowhere is
this more obvious than in the task of determining membership of a given
string in a given language, which, though decidable, may yet be intractable.
This task of recognition is the subject of the next section.

2.5 Parsing

While automata can be used for recognition, these theoretical machines
may not lead to practical implementations. The algorithmic aspect of
computational linguistics is the search for efficient recognizemamers
which take as input a gramm@rand a stringv, and return an answer as to
whetherw belongs td_(G), the language generated 8y Many such parsers
have been designed and implemented; we will mention a few of the most im-
portant.

The regular languages can be parsed in time whichris dd(the length
of the input string, and in fact it is easy to see how to implement a parser
based on regular expression specifications. It is also the case that the deter-
ministic subset of CFLs can be parsed in linear time, using a class of parsers
typified by the LRK) parsers [Sudkamp, 1988]. For CFLs in general, the
Cocke-Kasami-Younger (CKY) parser useslygmamic programmingech-
nigue to save results concerning already-parsed substrings, preventing their
being reparsed multiple times. The CKY algorithm can parse any CFL in
time that is O3) on the length of the input, though for linear CFLs it is
O(n?) [Hopcroft and Ullman, 1979]. The Earley algorithm is a context-free
parser with similar worst-case time complexity, but it is4Dor unambigu-
ous grammars and in practice is nearly linear for many real applications
[Harrison, 1978]. Modifications of the CKY and Earley parsers are often use-
ful in proving the complexity of parsing with novel grammar formalisms.

For grammars beyond context-free, parsing is greatly complicated, and in
fact we have already seen that no fully general parser is possible for unre-
stricted grammars, membership being undecidable. In all cases, it must be
emphasized, it may be possible to write special purpose parsers that very
efficiently recognize strings belonging to a specific language, even ones be-
yond the CFLs. The results given here are important when no restrictions are
to be placed on languages, other than their membership in these broad fami-
lies. This is in keeping with a philosophy that grammars should be declara-
tive rather than “hard-wired” into an algorithm, and by the same token
parsers should be general-purpose procedural recognizers. Nevertheless,
some types of parsers may be better suited to a domain than others, just as
backward-chaining inferencing (which corresponds to a parsing style known
astop-dowr) may be better in some applications than forward-chaining
(which corresponds toottom-upparsing), or vice-versa.

A related field in computational linguistics, thatgsghmmatical inference,
attempts to develop algorithms tladucegrammars by learning from exam-



SEARLS 61

sentence- noun_phrase verb phrase
noun_phrase- article modified_noud modified_noun

modified_noun- adjective modified_nour|1
modified_noun prepositional_phra{smoun

verb_phrase- verb_phrase noun_phras]e
verb_phrase prepositional_phrasje/erb

prepositional_phrase- preposition noun_phrase

noun -~ man | boats | harbor

verb — watched adjective — old | kind
article - the preposition - in

Figure 3. A Simple Natural Language Grammar

ple input strings, both positive and negative [Fu, 1982]. While some such ap-
proaches have been developed for RLs, no great practical success has been
achieved as yet for CFLs or above, again reflecting the decreasing manage-
ability of languages as the Chomsky hierarchy is ascended.

3 Computational Applications of Language Theory

In this section we will first briefly review the major arenas in which for-
mal language theory has been applied computationally, and then present in
more detail an application of a specific grammar formalism and parsing sys-
tem to the problem of specifying and recognizing genes in DNA sequences.
This will serve to motivate the remainder of our investigations.

3.1 Natural Language

Consider the natural language sentefidee kind old man watched the
boats in the harbor.”A highly simplified grammar that can specify this sen-
tence (among many others) is given in Figure 3. Here, the top-level rule says
that a sentence consists of a noun phrase followed by a verb phrase. Follow-
ing this are the phrase-level rules, and finally the lexical entries—the tokens
in this case being English words—given according to their parts of speech.

The study of human language has led to the creation of much more com-
plex and specialized grammar formalisms, and parsers to deal with them. It is
far beyond the scope of this work to review the rich literature that has result-
ed; for this the reader is referred to textbooks such as [Allen, 1987]. We will
note, however, some basic results concerning the formal status of natural lan-
guage. One straightforward observation is that natural language is ambiguous
at many levels [Shanon, 1978], including a structural or syntactic level. For
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Figure 4. Dependencies

example, if | sayl was given the paper by Watson and Criclalternative

valid parses could attach the prepositional phrase to the noun phease
paper (e.g. to mean that someone gave me a paper written by Watson and
Crick), or to the verb phraseas given the papdgto mean that Watson and
Crick gave me some paper). Somewhat more controversial is the notion that
natural language is nondeterministic, based in part on the evidence of “gar-
den path” sentences likd&he old man the boats.Most persons first parse
manas a noun modified bgld, then must backtrack upon “unexpectedly”
encountering the end of the sentence, to repadsas a noun anthanas a

verb. (Many, however, consider such phenomena to be jarring exceptions
that prove the rule, that the human “parser” is ordinarily deterministic.)

There has been much debate on the subject of where natural language lies
on the Chomsky hierarchy, but there is little doubt that it is not regular, given
the apparent capacity of all human languages to form arbitrarily large sets of
nested dependencijeas illustrated in Figure 4. An exaggerated example of
such a construction would B&he reaction the enzyme the gene the promot-
er controlled encoded catalyzed stoppedsing the symbols from Figure 4,
we can understand the nested relative clauses of this sentence to indicate that
there is a certain promoteq,] that controls ¥,) some genexg) that encodes
(y3) an enzymexp) that catalyzesyp) a reactionx;) that has stoppedy).
However difficult to decrypt (particularly in the absence of relative pro-
nouns), this is a syntactically valid English sentence, and many more reason-
able examples of extensive nesting can be found; these require a “stack,” and
thus a context-free grammar, to express. Moreover, a consensus appears to
have formed that natural language is in fact greater than context-free
[Schieber, 1985]; this is largely because of the existenceos§ing depen-
denciesin certain languages, also schematized in Figure 4, which are not
suited to pushdown automata for reasons that should by now be apparent. In
Dutch, for example, phrases similar to the one above have a different word
order that crosses the dependencies [Bresnan et al., 1982]. Evidence that En-
glish is greater than context-free, which is generally less straightforward, is
perhaps typified by the sentence (from [Postal and Langendoen, 1984])
“Some bourbon hater lover was nominated, which bourbon hater lover
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Figure 5. A Natural Language Parse Tree

fainted.” Here, the instances bfterandlover form crossing dependencies,
and these can theoretically be propagated indefinitely into forms such as
“bourbon hater lover lover hater . . .Which must be duplicated in a sen-
tence of this type, in effect forming a copy language.

3.2 Computer Languages and Pattern Recognition

Artificial languages such as computer languages are designed (whether
consciously or not) to inhabit the lower reaches of the Chomsky hierarchy,
for reasons of clarity and especially efficiency. The standard Backus-Naur
Form (BNF) for specifying computer language syntax is, in fact, essentially a
context-free grammar formalism. (A typical BNF, describing a domain-
specific computer language for performing various operations on DNA, can
be found in [Schroeder and Blattner, 1982].) That such languages should be
unambiguous is obviously highly desirable, and they are usually determinis-
tic CFLs as well so as to allow for fast parsing by compilers. Wherever pos-
sible, special-purpose languages such as string matchers in word processors,
operating system utilities likgrep etc., are designed to be regular for even
better performance in recognition, and overall simplicity.

Pattern recognition applications are not limited to RLs, however. The field
of syntactic pattern recognitiomakes use of linguistic tools and techniques
in discriminating complex patterns in signals or even images, in a manner
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Figure 6. A Gene Parse Tree

that is more model-based and structurally oriented than traditional decision-
theoretic approaches [Fu, 1982]. Specifying two-dimensional images appears
to require greater than context-free power; among the formalisms used in the
field for this purpose are indexed grammars [Fu, 1982; Searls and Liebowitz,
1990].

3.3 Developmental Grammars

The L-systems were in fact originally developed as a foundation for an
axiomatic theory of biological development [Lindenmayer, 1968]. The pro-
cess of rewriting terminals was meant to model cell division, with various
elaborations on the OL-systems allowing for developmental stage-specific
variations and (in the case of context-sensitive rules) for intercellular com-
munication. Since that time, formal linguists have explored the mathematical
properties of L-systems exhaustively, while theoretical biologists have ex-
tended their application to such topics as form in plants. Quite convincing
three-dimensional images of ferns, trees, and other plants, even specific
species, can be generated by L-systems; these are reviewed in [Prusinkiewicz
and Hanan, 1989], which also discusses the intriguing relationship of L-sys-
tems to fractals.
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gene --> upstream, xscript, downstream.
upstream --> cat_box, 40...50, tata_box, 19...27.
xscript --> cap_site,..., xlate,..., polyA_site.

cat_box --> pyrimidine, “caat”.
tata_box --> “tata”, base, “a”.
cap_site --> “ac”.

base --> purine, pyrimidine.

purine -->“g” | “a”. pyrimidine --> “t" | “c”.

xlate([met|RestAAs]) --> codon(met).
rest_xlate(RestAAs), stop_codon.

rest_xlate(AAs) --> exon(AAs).

rest_xlate(AAs) --> exon(X1), intron,
rest_xlate(Xn), {append(X1,Xn,AAs)}.

exon([]) --> [].
exon([AA|Rest]) --> codon(AA), exon(Rest).

intron --> splice.
intron, [B1] --> [B1], splice.
intron, [B1,B2] --> [B1,B2], splice.

splice --> donor, ..., acceptor.
donor --> “gt”. acceptor --> “ag”.

stop_codon --> “tga” | “ta”, purine.
codon(met) --> “atg”.

codon(phe) --> “tt”, pyrimidine.
codon(ser) --> “tc”, base. % etc...

Figure 7. A Simple Gene DCG

3.4 Gene Grammars

One of the useful byproducts of any practical parsing algorithnpasse
treg illustrated for the example above in Figure 5. This is a tree-structured
depiction of the expansion of the grammar rules in the course of a
derivation—astructural representation of the syntactic information used in
recognition. In practice, a parse tree or some other form of information about
the parse is essential to further interpretation, e.g. for semantic analysis in the
case of natural language, since otherwise a recognizer simply returns “yes”
or “no.”

It is the premise of this article that DNA, being a language, should be
amenable to the same sort of structural depiction and analysis; indeed, the
parse tree shown in Figure 6 would appear to any biologist to be a reasonable
representation of the hierarchical construction of a typical gene. This being
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the case, we can fairly ask what the nature of a grammar determining such a
parse tree might be, and to what extent a grammar-based approach could be
usefully generalized.

To further explore this question at a pragmatic level, we have implement-
ed such grammars using the logic-based formalisaebhite clause gram-
mars (DCGs). These are grammars closely associated with the Prolog pro-
gramming language, and in fact are directly compiled into Prolog code which
constitutes a top-down, left-to-right parser for the given grammar. The sim-
plified gene grammar shown in Figure 7 illustrates a range of features.

The top-level rule fogene in this grammar is an uncluttered context-free
statement at a highly abstract level. The immediately succeeding rules show
how the grammar can be “broken out” into its components in a clear hierar-
chical fashion, with detail always presented at its appropriate level. The rules
for cat_box , tata box , andcap_site specify double-quoted lists of
terminals (i.e., nucleotide bases), sometimes combined with nonterminal
atoms likepyrimidine . The “gap” infix operator (.. ') simply con-
sumes input, either indefinitely, asxscript , or within bounds, as iap-
stream .

DCGs usdlifference lists hidden parameter pairs attached to nontermi-
nals, to maintain the input list and to express the span of an element on it
[Pereira and Warren, 1980]. For notational convenience, we will refer to
spanson the input list using an infix operator ‘/* whose arguments will repre-
sent the difference lists; that is, we will wrl®/SwhereS0is the input list
at some point, an& is the remainder after consuming some span. We will
also use an infix derivation operater=>" whose left argument will be a
nonterminal or sequence of nonterminals, and whose right argument will be
either a list or a span to be parsed. Note that this actually represents the
reflexive, transitive closure of the formal derivation operator described
above. Top-level calls might appear as follows:
tata_box ==> “tataaa”.

(31)
tata_box ==> “tatatagcg’/S.
Both these calls would succeed, with the latter leaving S bound to “gcg”.

Features of DCGs that potentially raise them beyond context-free power
include (1)parameter-passingjsed here to build the list of amino acids in
the transcript. Thexon rule assembles sublists recursively, after which
xlate andxlatel combine them to form a complete polypeptide by
means of (2procedural attachmerin the form of a curly-bracketed call to
the Prolog built-inappend . This feature of DCGs allows arbitrary Prolog
code (or other languages) to be invoked within rule bodies, extending to sim-
ple utilities, more complex search heuristics, entire expert systems, dynamic
programming algorithms, or even calls to special-purpose hardware.
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| ?-  (...,0ene,...):Parse ==> mushba.
[loading /sun/mn2/dbs/dna/mushba.db...]
[mushba.db loaded 0.933 sec 1,442 bases]

Parse =

gene:
upstream$0:
cat_box:282/"ccaat”

tata_box:343/"tataa”
cap_site:371/"ac”

xscript:
codon(met):
405/"atg”
exon:(405/501)
intron:
donor$2:500/"gtgaga”

acceptor$0:606/"tctctccttctcccag”
exon:(623/827)
intron:

donor$2:827/"gtatgc”

acceptor$1:945/"cactttgtctccgcag”
exon:(961/1087)
stop_codon:1087/"taa”

polyA site$0:1163/"aataaa”

Figure 8. A Gene DCG Parse

DCGs also allow for (3)erminals on the left-hand sid# a rule, trailing
the nonterminal; they are added onto the front of the input string after such a
rule parses. This feature is usediftyon in such a way that a new codon
is created when the reading frame straddles the splice site [Searls, 1988].
Rules in this form are not context-free. We can also see that procedural
attachment gives the grammar Turing power, so that it can specify recursive-
ly enumerable languages, and in fact the same is true of unrestricted parame-
ter-passing.
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For large-scale search we have abandoned the built-in Prolog list structure
for the input string, which is instead implemented as a global data structure
in an external ‘C’ array. (Thus, numerical indexing replaces the DCG differ-
ence lists.) In conjunction with this, intermediate results are savedeéti-a
formed substring tablésimilar in principle to a CKY parser) that also pre-
vents repeated scanning for features across large gaps. Other additions
include a large number of extra hidden DCG parameters to help manage the
parse, including one which builds and returns a parse tree. We have also im-
plemented specialized operators to manage the parse at a meta level, to arbi-
trarily control position on the input string, and to allow for imperfect match-
ing. In the terminal session shown in Figure 8 a search is performed on the
GenBank entry “MUSHBA” containing the mouseglobin sequence. The
top level derivation operator is extended to allow calls of the form
sentence:Parse ==> input, where the input may be specified as
(among other things) a file containing sequence data, and where a parse tree
may be returned via the variatitarse .

The grammar used was derived from that of Figure 7, but with the additional
control elements described above, and much more complex rules for splice junc-
tions that use simulated weight matrices for donors and detection of branch
points and pyrimidine-rich regions for acceptors, in addition to the invariant din-
ucleotides. The resulting grammar, with considerable tuning, has been success-
ful in recognizing not only mouse but humadike globins, while ignoring
pseudogenes (e.g., in the hunoagene cluster “‘HUMHBAA4"). We have also
tested it against the whole 73,000+ base pair hupaglobin gene region
(“HUMHBB"), and were able to collect the entire cluster of five genes on a sin-
gle pass that required 4.7 CPU-minutes on a Sun 3/60. A pseudogene as well
as large intergenic stretches were passed over.

By “relaxing” the specifications in various ways (allowing in-frame stop
codons within exons and an out-of-frame final stop codon, and loosening
constraints on the splice donor weight matrix), we have also been able to
study aberrant splicing that would otherwise produce untranslatable message
[Searls and Noordewier, 1991]. By duplicating knd8vthalassemia muta-
tions, additional cryptic donors were recognized, most of which are observed
in nature in aberrant splicing. The alternative transcription products seen ex-
perimentally were also produced by the DCG parser because of backtrack-
ing, which may also be useful for modeling the alternative transcription start
sites and splicing seen in certain viruses, as well as in experiment planning
applications [Searls, 1988].

The weakest links in the gene grammars developed to date are the signals
for splice junctions. In a practical implementation, it may be preferable to
incorporate other specialized algorithms (e.g. neural net recognizers) directly
into the grammar, and procedural attachment in DCGs makes this relatively
easy. The grammar still provides a very useful organizing framework, which
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can serve to place such algorithms in an overall hierarchical context that cap-
tures the complex orderings and relationships among such features.

The gene grammars used for the investigations described above are writ-
ten without great regard for the linguistic status of the features being parsed,
and we have seen that the power of DCGs is such that the languages defined
potentially may reside at any level of the Chomsky hierarchy. Nevertheless,
this does not prove that the language of nucleic acids is beyond regular, and
indeed most of the features specified above can be rewritten as regular ex-
pressions, however awkward they may be. The grammar form is preferable
if for no other reason than that it promotes an abstracted, hierarchical view of
the domain. Regular grammars have been written describing much simpler
genes [Brendel and Busse, 1984], and at least one author [Shanon, 1978] has
argued that the genetic language is no more than context-free, and in fact that
a syntactic approach is not even necessary given its lack of structure in the
usual linguistic sense. However, these arguments are based on a very limited
view of biological phenomena, confined to the amino acid code itself. On
the contrary, in succeeding sections it will be seen that biological sequences
are rich with structural themes, both literal and linguistic.

4 Structural Linguistics of Nucleic Acids

We now proceed to consider exactly how much linguistic power is actual-
ly required to encompass various phenomena observed in nucleic acids that
are literallystructural—that is, depending on the physical nature of DNA and
RNA, rather than any information encoded. The informational structure,
which we will refer to agunctionallinguistics, will be discussed later. Only
a minimal knowledge of the molecular biology of nucleic acids is required
for this section, though a wider range of biological phenomena is cited else-
where which is beyond the scope of this work to review; for background,
readers are referred to standard textbooks such as [Watson et al., 1987;
Lewin, 1987].

4.1 Properties of Reverse Complementarity

Before beginning, we will establish a notation and some basic properties
of nucleic acid complementarity. We will uniformly adopt the alphabet of
DNA

2DNA = { g, C a, } (32)
and let a bar notation represent an operation corresponding to simple base

complementarity, i.e. indicating bases that are able to physically and infor-
mationallybase-pairbetween strands of double-helical DNA:

g=c, &g, &t, and " ta (33)
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While much of the work to follow will apply primarily to RNA structure,
we will assume that features of interest are actually being examined on the
DNA which encodes them. Clearly this operation can be extended over
strings and constitutes a homomorphism, since we can say that

T-v={y) for uvOSka (34)

We will abbreviate (34a) asv. We can also see that this homomorphism
and string reversal have the following properties:

@=w,  A°=w, and W) =@ (35)
The composition of complementarity and reversal in (35c), which will be
written aswR, is of course the “opposite strand” of a strimgf DNA, since
not only are the strands of a double helix complementary but they are orient-

ed in opposite directions. Care must be taken not to treat this operation as a
homomorphism, since it does not itself preserve concatenation in general:

-2 R =vR- TR where |u| # |v| (36)

Rather, such a string function is evolution [Head, 1987]. We can easily
derive from the lemmas of (35) the familiar property that in essence allows
nucleic acids to be replicated from opposite strands:

PR —op L ——
(WR)" = WR)R = @) =w (37)
We will demonstrate one other fundamental property (also noted by

[Head, 1987]), concerning the special case of strings that are identical to
their opposite strands, i.e. those in the language

Le={ wOZbla |w=wR } (38)
We note first that any suelhhmust be of even length, or else it would have
a centermost base not identical to the centermost base of its opposite strand,
since they are required to be complementary. Thus, we can dividie two
equal halves, and also conclude that

w=uv=wR =7RTR =y where |u] = |v| (39)

(where the bar notation is now used to denote the lengths of the strings).
Thus we see that, is in fact the language

Le={ ut® |woshia } (40)

The equivalence of the languages (38) and (40) will come as no surprise
to any molecular biologist, since it is simply a linguistic expression of the
basic notion ofdyad symmetry.The language., will become important in
the following section.
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Figure 9. An Inverted Repeat

4.2 Nucleic Acids Are not Regular

Inverted repeatsire prevalent features of nucleic acids, which in the case
of DNA result whenever a substring on one strand is also found nearby on
the opposite strand, as shown at the top of Figure 9. This implies that the
substring and its reverse complement are both to be found on the same
strand, which can thus fold back to base-pair with itself and form a stem-and-
loop structure, as shown at the bottom.

Such base-pairing within the same strand is call®dndary structurelt
would seem that we could specify such structures with the following context-
free grammar:

S~ bsh|A A bA|e where bOS oy (41)

The first rule sets up the complementary base pairings of the stem, while the
second rule makes the loop. Note that disjuncts usihgre and in all sub-
sequent grammars, are actually abbreviations that expand to four disjuncts,
e.g. allowing in the first rule above every possible alphabetic substitution that
maintains the required complementarity. These complementary bases estab-
lish nested dependencies between respective positions along the stem.

However, theA rule for the loop in (41) is an obstacle to further analysis,
since it can specify any string and thus the resulting language is simply
ZELA, making it trivially regular. We will return to this issue in a moment,
but in order to study the essential aspects of this language, we will first focus
on the base-pairing stems and dropAhrale from (41), thusly:

S_ bSb|e (42)

The resulting language may be thought of as that of idealized, gapless bio-
logical “palindromes,” able to form secondary structure extending through
entire strings with no loops (i.e., we imagine them having no steric hindrance
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to prevent complete base-pairing to the ends of the stems, whereas in reality
there is a minimal loop necessary). In fact, this is simply the landyaafe

(40) representing sequences concatenated to their own reverse complements.
This equivalence can be shown by simple inductions on the length of strings
in (40) and the number of derivation steps used in (42); we leave this to the
reader, though proofs along the same lines will be given below.

We will, however, show thdt, cannot be an RL, by proving that no FSA
can recognize it. Such an FSA would, for instance, be required to accept
g'c! for alli=1 and reject ¢ic' for all i#j. Let g, denote the node or state
in which the FSA arrives after having processed a strfhgTihen we know
that g; £ for all i#j, since starting from the statg and consuming the
string ¢ leads to a final node, while fron|], consuming the same string c
mustnotlead to a final node. Thus the FSA must have distinct statesd
e for all i#j and, since any length input is allowed, it must therefore have
an infinite number of states. Since an FSA must by definition be finite, there
can be no such FSA recognizibg and thud ¢ cannot be regular.

4.3 Non-ldeal Secondary Structure

Let us call a stringdeal whenever, for each base type, its complement is
present in the string in equal number. Languages having only ideal strings,
or grammars that specify them, will also be called ideal. The grammar (42)
is ideal, since any time a base is added to the terminal string, so is its com-
plement. However, the grammar (41) is non-ideal, due to its loop rule.

In addition, (41) is inadequate as a model because in fact it aeegpts
string of any size via the loop disjunct, and can bypass the more meaningful
stem disjunct entirely. One practical solution to this problem is to place con-
straints on the extents of these subcomponents, for instance requiring a mini-
mum lengthp for the stem and a maximum lengghfor the loop. This
reflects biological reality to the extent that inverted repeats that are too small
or too far separated in a nucleic acid molecule can be expected to base-pair
less readily. For a given fixgdandq, this gives rise to the language

Lp={ uvt® |uvOSEha . |ulzp, and|vi<q} (43)

That this is still a CFL is demonstrated by our ability to specify it as a
context-free grammar, as follows:

A - bA b for O<i<p
Ap - bAD | Bo (44)
Bj - bA1~+1|e for 0<j<q
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Here, subscripted rules are meant to be expanded into multiple rules ac-
cording top andq. TheA rules account for the stem, with each distinct rule
“counting” the base pairs up to the minimum required, then permitting any
number of additional base pairs; similarly, BBeules count the unpaired
bases of the loop, but in this case impose a maximum. We will prove that
this language., is not regular, by contradiction. Suppose that it were indeed
regular, and let us derive a new language from it:

L'n=o(gc O ggeed gggeeeD -+ O gPlePl O (L, n g*adc*))  (45)

where @ is the homomorphism based @fg)=0, @(c)=1, andg(a)=p(t)=¢.

We see that for fixe@ andq each of the expressions lif}, is regular, and
furthermore we know that the RLs are closed under each of the operations
used, i.e. intersection, union, and homomorphism. Thuigself must also

be regular. Now let us simplify the expression (45), first examining the inter-
section ofL, with the regular expression on the right. Of all the strings gen-
erated byL, this regular expression “selects” ones that have exaathyn-
secutive a’s, flanked by any number of g's on the left and c's on the right, and
no t's at all. Since the a’s thus have nothing with which to base-pair, they
must all be in the loop portion, and in fact because therg afeghem they

must constitute the entire loop. The flanking g's and c's thus base-pair to
form the stem, and being base-paired they must be present in equal humbers,
greater than or equal . Similarly the sub-expressions on the left are a
finite union of RLs containing equal numbers (less fheof g's followed by

c's. The homomorphismp serves to convert g's and c's to a different alpha-
bet and to discard the a’s, leaving the language

Ln=o({dicl | 1<j<p} O{ g'adci |i=p}) ={om1n|n=1} (46)

But this language is the same as (7), which is known not to be regular (as
can be demonstrated using essentially the same proof as in the previous sec-
tion). Thus our assumption thigi is regular must be false, and we may ex-
tend this result to a conjecture that secondary structure with any suitable lim-
its placed on its non-ideal components will not be regular. (In particular,
relating the non-ideal to the ideal regions, e.g. allowing them to be propor-
tional in size, would appear to raise the resulting languages even beyond
context-free.)

4.4 Nucleic Acids are neither Deterministic nor Linear

As was noted above, the nondeterministic parser inherent in DCGs is use-
ful in dealing with empirical nondeterminism in biological systems, such as
alternative splicing and other transcriptional variants. But besides this ob-
served nondeterminism, we can now see that the structure of nucleic acids, in
particular that associated with inverted repeats, is nondeterministic by its na-
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Figure 10. Recursive Secondary Structure

ture. By reasoning similar to that given above for (11), any recognizer for
such structures would have to guess at the center point of the inverted repeat.
The presence of a loop does not alter this result.

The grammar (42) for inverted repeats is linear; however, many more
elaborate forms of secondary structure are possible, and anything with more
than a single stem structure would not be linear. For example, a grammar
specifying any number of consecutive inverted repeats would be simply

S~ AS|e A - bADb| e (47)

Clearly this, or any other grammar specifying multiple inverted repeats,
would exceed the capabilities of a one-turn PDA. Even this is not a “most
general” form for ideal secondary structure, however, because it does not
allow for structure within structure, which is quite common in RNA in
configurations like that of Figure 10. We can propose a formal description of
all such secondary structure by recursively building a set of strings of this
nature.

Let us define anrthodoxstring as eitheg, or a string derived from an or-
thodox string by inserting an adjacent complementary phjrat any posi-
tion. The intuition behind this definition is that adding such pairs to a sec-
ondary structure will either extend the tip of a stem, or cause a new stem to
“bud off’ the side of a stem, and these are the only operations required to
create arbitrary such secondary structure. Clearly every orthodox string is
ideal. Moreover, we can specify the set of all orthodox stringswith a
grammar that merely adds to (42) a disjunct that duplicates the start symbol:

$ - bsp| s |e (48)
That this specifies exactly the orthodox strings is shown by induction on
the length of the string. The empty strings both orthodox and derivable
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from (48). Assuming that any and all orthodox strings of lengtiioly
even-length strings being allowed) are derivable from (48), we must show
that the same is true for orthodox strings of lengti+-2)(. For the longer
string to be orthodox, it must be built on some orthodox stin§length 2

that, we know by the inductive hypothesis, is derivable from (48). Without
loss of generality, we can assume that the derivatiendsflays alk rule ap-
plications to the end. Note also that, for every derivation step applying the
first disjunct of (48) to derive the substrib§b, we can substitute a deriva-
tion producing the substrirgb$bS, instead, since

$0 $%0 $%% 0 $0$0S, 0 bSpS 0 bsp (49)
Therefore, we can ensure that in the intermediate string just befareuties
are applied in the derivation of, there will be§;’s flanking every terminal
base, in every possible position where the idxnight be added to create
the orthodox string of length 2¢1). Sincebb is derivable from suclg;s,
this same derivation can be easily extended to produce any and all such
strings, completing the inductive proof.

4.5 Nucleic Acids Are Ambiguous

We have seen that non-ideal secondary structure grammars such as (41)
are ambiguous, in a way that can subvert the implicit biological meaning
(since bases which rightfully could base-pair in the stem via the first disjunct
can also be attributed to the loop by the second rule). We can observe a
much more interesting form of ambiguity in the grammar of (48) that relates
biologically to the underlying language of orthodox secondary strudiyre,
Consider the sublanguagelgf consisting of concatenated inverted repeats:

LE = Le'Le ={ utRwWR|u,vOsLla } (50)
This in turn contains the set of ideal double inverted repeats, i.e.
Lg ={ utRua® |uozhia } (51)

Any such string can clearly be derived fr&yas two side-by-side invert-
ed repeats, but it follows from the equivalence of (38) and (40) that the entire
string can also be parsed as a single inverted repeat, e.g. the following two
leftmost derivations from the grammar (48):

SU U 9 U gate, U gatx,
0 gatcdgec U gatcgd&otc [ gatcgatc (52)

S U g§cl gaStc U galgatc gatcygatc gatcgatc
Note that these two derivations correspond to two alternative secondary
structures available to the input string, as illustrated in Figure 11. The first
derivation of (52), which spawns tw§’s, in effect describes the so-called
“dumbbell” structure shown at the left, in which the two inverted repeats
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Figure 11. Dumbbell, Cloverleaf, and Hairpin Structures

base-pair separately; the second derivation, which uses a §irigteugh-

out, describes the uniform “hairpin” structure shown at the right. Such dou-
ble inverted repeats are indeed thought to assume both structures alternative-
ly in certain biological situations (e.g. RNAs specifically replicated by the
bacteriophage T7 DNA-dependent RNA polymerase [Konarska and Sharp,
1990]), as well as intermediate “cloverleaf” structures, as shown in the center
of Figure 11. In fact it can be seen that for ideal double inverted repeats of
this form, a continuous series of such intermediate structures are available,
base pair by base pair, between the two extremes. It is gratifying that each
such secondary structure corresponds to a different partition on the set of
leftmost derivations, interpreted in this manner, e.g. the following cloverleaf
version of the input from (52):

SU 0ch 93U 92U 9atHSC
O gatg§ec 0 gatcx,g§,c U gatedyc U gatcgtc O gatcgate

This suggests a strong analogy between derivations and physical sec-
ondary structures—in fact, parse trees from these grammars can be seen as
actually depicting such structure. (The extent to which alternative structures
are allowed is related to the language-theoretic notiodegfree of
ambiguity)

Of course, having found an ambiguous grammar for such features does
not imply that the language containing themniserentlyambiguous; that
would require proving that no unambiguous grammar suffices. Surprisingly,
the languagé. 4 of generalized orthodox secondary structure appears not to
be inherently ambiguous, since it falls in a class of languages (the full or
two-sided Dyck languages—see section 2.7.5) for which unambiguous gram-
mars are possible [Harrison, 1978, p. 322]. However, there may well exist
sublanguages df, which are inherently ambiguous (perhaps the language
Lezof (50), which is similar to the inherently ambiguous language of concate-
nated pairs of ordinary palindromes [Harrison, 1978, p. 240]). In any case,

(53)
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Figure 12. Attenuator Structure

we might actually prefer an ambiguous grammar that models an underlying
biological ambiguity, such as alternative secondary structure, particulary
when that ambiguity has functional significance.

Attenuatorsfor example, are bacterial regulatory elements that depend on
alternative secondary structure in their corresponding mRNA to control their
own expression [Searls, 1989a]; a simplified representation of their structure
is shown in Figure 12. An attenuator has the capability to form alternative
secondary structure in its nascent mMRNA, under the influence of certain ex-
ogenous elements depicted in the figure, to establish a kind of binary switch
controlling expression of a downstream gene [Lewin, 1987]. If we model an
attenuator as either of two alternative languages corresponding to these
states,

Lof‘f:{ uvvR |u,vDZEL,A} I-on:{ uthy | UNDZELA} (54)

then the relationship of these languages to those of (29), and afrtfaito

the inherently ambiguous language of (23), is apparent. Nevertheless, this is
still not a formal proof, and in fact it can be argued that andLg, should
actually beintersectedsince both conditions are required to be present in the
same language to produce the function described (see section 2.7.2).

Again, while we leave open the question of the formal status of nucleic
acids vis-a-vis inherent ambiguity, we note that a contrived unambiguous
grammar for any given secondary structure may be inferior as a model, if it
fails to capture alternatives in the secondary structure. Moreover, the defini-
tional requirement for geftmostderivation may itself be irrelevant to the
physics of folding, which presumably can occur simultaneously along the
length of the molecule. An interesting exception to this would be the folding
of nascent RNA that occurs as it is synthesized, which of course is leftmost.

Another functional theme in nature involving alternative secondary struc-
ture isself-primingof certain DNA molecules, such as parvoviruses [Watson
et al., 1987] where the ends of double-stranded molecules are able to refold
into T-shaped configurations that can “bootstrap” the synthesis of a new copy
of the entire viral genome. In this case, the most fundamental process of
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Figure 13. Tandem and Direct Repeats

replication of an organism may be viewed as depending on a kind of ambigu-
ity in the language containing its genome (see section 2.7). We will shortly
see how replication might itself result in inherent ambiguity (see section
2.5.1).

The nondeterminism of secondary structure rules out linear-time parsing,
and its nonlinearity and possible inherent ambiguity would also preclude cer-
tain quadratic-time simplifications of well-known parsers. Any of the struc-
tural elements given so far could be parsed in cubic time at worst (or, indeed,
recognized more efficiently by less general algorithms), but we will now
offer evidence for non-context-free features that may create further compli-
cations.

4.6 Nucleic Acids Are not Context-Free

The presence (and importance) of tandem repeats and direct repeats of
many varieties in DNA, as depicted in Figure 13, indicate the need to further
upgrade the language of nucleic acids; these are clearly examples of copy
languages, as specified in (14), which are known to require CSLs for their
expression. Direct repeats entail crossing dependencies, where each depen-
dency is in fact simply equality of the bases.

While there is thus strong empirical evidence for any general language of
nucleic acids being greater than context-free, we may yet ask if there is any
structural correlate, as is the case for context-free secondary structure. Sev-
eral possibilities are shown in Figure 14. The illustration on the left suggests
that a string of direct repeats extending infinitely in either direction could
shift an arbitrary number of times, and still maintain base-paired structure
with its reverse complementary string through alternative “hybridization.” In
practice, of course, only a few direct repeats might suffice, and in fact such
misalignment in highly repetitive sequences is postulated to occur in mecha-
nisms of change involving unequal crossing over [Lewin, 1987]. The illus-
tration on the right of Figure 14 shows how a circular molecule could be
formed by alternative base pairing between a simple tandem repeat and its
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Figure 14. Structural Correlates for Direct Repeats

reverse complement. (Circular molecules, which we will have occasion to
deal with again, are in fact quite important in biology; they have been sug-
gested as a motivation to extend formal language theory to circular strings
[Head, 1987].)

Are there, however, mechanisms wherebsirgyle strand can form sec-
ondary structure that is not encompassed by the grammar of (48), and is thus
perhaps greater than context-free? In fact, recent evidence points to “non-or-
thodox” forms of secondary structure, callgseudoknotsin many RNA
species [Pleij, 1990]. Such a structure is shown in Figure 15. While each
base-paired region only creates nested dependencies, the combination of the
two necessitates crossing those dependencies.

To formally illustrate the consequences of this, consider an ideal pseudo-
knot language (i.e. one without unpaired gaps, etc.), which can be represent-
ed as follows:

Lk={ uvURv_R|u,vDZELA} (55)

We will prove that this language is not context-free, again by contradic-
tion. If Ly were indeed a CFL, then since CFLs are closed under intersection
with RLs, the language

Lk=Lk n gtatcttt (56)
would also be a CFL. We can see that any choice of the substhiom
(55) must exactly cover the initial g's selected by the regular expression,
while v must exactly cover the a’s, etc. Otherwise, some substring from (55)
would have to contain the boundary pairs ‘ga’, ‘ac’, and/or ‘ct’; this cannot
be, because each substring’s reverse complement is present, and therefore so
would be the pairs ‘tc’, ‘gt’, and/or ‘ag’, respectively, all of which are forbid-
den by the regular expression. We know that the lengthaofd thus the
number of g’s is equal to the Iengthﬁﬁ and the number of c¢’s, and similar-
ly for v andv® so that in fact

L ={ gialtici |ij=1} (57)
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Figure 15. Pseudoknot Structure

which is related by a trivial homomorphism (under which CFLs are also
closed) to the language (13b), known to be greater than context-free. Hence,
Ly cannot be context-free.

The pseudoknot languadg of (55) is clearly ideal, but cannot be ortho-
dox because it contains strings, such as thodg,ithat have no adjacent
complementary bases. Thus, there exist ideal but non-orthodox secondary
structure languages which are greater than context-free. We can, however,
show that the most general ideal language, i.e. the set of all ideal strings (or-
thodox or not);, is a CSL witte since it is specified by the following essen-
tially context-sensitive grammar:

S - Bybs e
B - b for eachb, dO A (58)

dg, - Byd

This grammar can only generate ideal strings, since éveeyived is ac-
companied by &, which must eventually produce exactly dneThe proof
that (58) generates every ideal string is by induction on the lengths of such
strings. The ideal stringderives from (58); we assume that any ideal string
of length 21 does also, and attempt to show this for any ideal stxiraf
length 20+1). It must be the case that= ubvb for someu,vDZELA, and
furthermore the ideal stringv of length 2 must derive from (58) by the in-
ductive hypothesis. It can be seen t§atan only appear once in any inter-
mediate string of this derivation, and always at the end; thus, in a leftmost
derivation the final step must be an application okthge to the stringivs,
in which case we can adapt this derivation to produce

SO 0 uSO uvgbS O uvBbOMuBvbO ubvb (59)

where the penultimate derivation steps comprise sufficient applications of the
final, context-sensitive rule of (58) to alldBy to traversev leftwards to its
final position—that ism=|v|. This completes the induction, as well as the
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proof that the grammar of (58) generates exaktlythe set of all ideal
strings.

From the results thus far concerning secondary structure, we may make
the informal generalization that orthodox structure is inherently context-free,
and ideal non-orthodox structure is greater than context-free. Care must be
taken in extending these intuitions to specific cases, though, since subsets of
languages may be either higher or lower in the Chomsky hierarchy than the
original language. For example, the language generatédauy)* is ideal
and non-orthodox, but obviously regular, while the language of double in-
verted repeatd,q of (51), is orthodox but not a CFL, since it also specifies
direct repeats. We also note in passing, without proof, the interesting obser-
vation that for a complementary alphabet of less than four letters (e.g. if only
g’'s and c’s are used) there can be no non-orthodox ideal strings.

4.7 Nucleic Acids as Indexed Languages

The features described thus far are all encompassed by CSLs waittl
in fact can be described by indexed grammars, which specify the IL subset of
CSLs. The following indexed grammar defines the copy language of DNA
(i.e., tandem repeats):

S~ bP|A AP, Ab A g (60)

(It may be noted that this simplified grammar does not strictly correspond to
the formal definition of an indexed grammar, but there is an easy transforma-
tion to one that does, e.g. using stack end markers, etc.) The first rule serves
to record in the indices all of the bases encountered, whila thie “plays

back” the bases in the proper order. A sample derivation from this grammar

would be
SO gS8 0 gesSty O geaSacdd gecaAacy 61)
O gcaAt9all gcaA9call gcaAgcall gcagca

Note that we can easily specify inverted repeats as well, which is not sur-
prising since the ILs contain the CFLs. We just substitute in the grammar
(60) a different rule foA:

S~ bP|A AP _ bA A e (62)
Then, following the same course as the last example derivation (61), we have
SO gS9 0 geSt9 O gecaSacd ] gcaAacy
O gcatACd [0 gcatgAd 0 gcatgdA O gcatgc

ILs can contain an unbounded number of repeats (or inverted repeats, or
combinations thereof), by simply interposing an additional recursive rule in
the grammar (60). We can also specify “interleaved” repeats, as in the fol-

(63)
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lowing grammar specifying the pseudoknot languagef (55):
S~ bP|A AP _, bAD|B B_ bB B ¢ (64)

With this facility for handling both crossing and nested dependencies, it is
tempting to speculate that the phenomena observed in biological sequences
may be contained within the ILs. It has been suggested that ILs suffice for
natural language [Gazdar, 1985], and it is also interesting to recall that
OL-systems, which have been so widely used to specify biological form, are
contained within the ILs [Prusinkiewicz and Hanan, 1989].

5 Closure Properties for Nucleic Acids

Viewed as a kind o#bstract datatypenucleic acids could be usefully
defined by the range of biological operations that can be performed on them.
Viewed as language, it thus becomes important to understand their linguistic
behavior under those operations. In this section we examine a number of
known closure properties of languages under various operations that are rele-
vant to nucleic acids, as well as some derived operations that are specific to
the domain.

5.1 Closure under Replication

Consider the operation devised on strimgBZELA to denote the reverse
complementary stringzvR. Are the language families of interest closed
under this operation? In other words, if we decide that some phenomenon in
DNA falls within the CFLs (for example), can we be assured thabppe-
site strandwill not be greater than context-free?

Recall that the bar operation is asffee” homomorphism. Of the lan-
guage families we have described, the RLs, CFLs, ILs, CSLs, and recursive-
ly enumerable languages are all closed under such homomorphisms; as it
happens, they are also all closed under string reversal, and thus we can be
confident that opposite strands will maintain the same general linguistic sta-
tus. This being the case, we can design an operation on sets of strings that
will replicatethem in the sense of creating and adding to the set all their op-
posite strands:

REAL) ={ ww" |wOL} = LOTR  for LOSL{a (65)

Since we have closure under union for all these language families as well,
they are still closed under this replicational operation. Note that the defini-
tion of (65) accords well with the biological fact sgmi-conservative repli-
cation, in which there is a “union” of each original string with its newly-syn-
thesized opposite strand. Indeed, we can extend this operation to its own
closure (i.e., allowing any number of applications of it), denoted as usual by
an asterisk, and observe a much stronger, biologically-relevant result:
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REP*(L) = REA(L) (66)

This follows from (37), and is simply a linguistic statement of the fact
that, onceREP has been applied to any population of strings and they are
thus “double-stranded,” the same strings will recur for any number of repli-
cations.

It should be noted, however, that the deterministic CFLs are not closed
under either homomorphism or string reversal, so that a context-free feature
that parses deterministically on one strand may be nondeterministic (though
still context-free) on the opposite strand. The following suggests why:

Lp={ adicigi |i,j>1} O{tgicigi |i,j>1} (67)

Were it not for the initial ‘a’ or ‘t" on every string in this CFL, it would be
nondeterministic for reasons described in relation to the languages of (23)
and (29). However, the ‘a’ and ‘t’ act as “markers” that tip off the recognizer
as to what elements it should use the stack to count, mbjjmtgterminis-

tic. Note, therefore, that any homomorphism that mapped ‘a’ and ‘t' to the
same element would negate the effects of the markers and leave a nondeter-
ministic language. More to the point, string reversal moves the marker bases
to the opposite ends of the strings where the recognizer will not encounter
them until the end. Thus,

R ={ cigicia|ij=1} 0{cigicit|ij>1} (68)
would be recognized (in a leftmost fashion) nondeterministically. (A more
formal grounding for this nonclosure proof may be found in [Harrison,
1978]). One practical consequence of this is that there may be situations
where it is better to parse a string in one direction than another, particularly
with a top-down backtracking parser like that of DCGs; for example, one
would want to establish the presence of the invariant dinucleotides in a splice
junction before searching for the much more difficult flanking signals.

Since replication as we have defined it constitutes a union of a language
with its reverse complementary language, it is easy to show that unambigu-
ous CFLs are not closed under this operation, since there may be strings in
“double-stranded” sets such that we cannot kagwiori from which strand
they came. For example, the language

Ly={ dicigi |i,j=1} (69)
is a deterministic (and thus unambiguous) CFL, since a PDA could simply
push the stack on the first set of g’s and pop on the c’s, with no guesswork re-
quired. However, when replicated this language becomes
RERLy) ={ gicigk|i=j or j=k} (70)
which is essentially the inherently ambiguous language of (23), necessarily
having multiple leftmost derivations whenevej=k.
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5.2 Closure under Recombination

Other “operations” that are performed on nucleic acid molecules include
recombinatory events. For simplicity, we will confine ourselves here to
primitive manipulations like scission and ligation. The latter is ostensibly
straightforward, for, if we define ligation and the “closure” of ligation (i.e.
the ligation of any non-zero number of strings from a language) as follows

Lic(L) ={ xy|xyoL} = L-L
LIG*(L) ={ xy % " X, | n=1 andx; OL for 1<isn} = L*

then we can see that these correspond to concatenation and its positive clo-
sure over languages, and it is the case that RLs, CFLs, ILs, CSLs, and recur-
sively enumerable languages are all closed under these operations.

It must be emphasized that this simple definition has inherent in it an
important assumption regarding the modelling of biological ligation. View-
ing nucleic acids as literal strings in solution, one might think that there is no
a priori reason they should not ligate head-to-head and tail-to-tail, as well as
head-to-tail as is implicit in the usual mathematical operation of concatena-
tion. It happens, though, that these strings are not only directional, but that
ligation is only chemically permitted in the head-to-tail configuration; in this
instance, life mimics mathematics. As a practical matter, however, ligation
generally occurs in populations of double-stranded molecules, so we must
take account of the fact that in this case the strings Erégmthe definitions
(71) will also ligate head-to-tail as reversemplementsindeed we see that

LIG(RERL)) =LIG(L OTR)
=(L'L) O (L TR O @CRL) O CRTR
gives all the required combinations, and uses only operations that preserve
our stated closure results.
In the case of scission, we take advantage of the fact that the language

families listed above, with the sole exception of the CSLs, are closed under
the operations of selecting all prefixes or all suffixes of a language, i.e. under

PRE(L) ={ x | xyOL} surL) ={y [xyoL} (73)
This being the case, we can prove closure under scission for either a single
cut or for any number of cuts, by combinations of these operations:

cut(L) ={ x,y|xyOL} =PREL) O SURL)
CUT*(L) :{ u |xuyDL} = PRESUHL))
The latter operation, in fact, is just the set of all substrings @nce again,
it is interesting to note that, within the CFLs, neither deterministic nor unam-

biguous languages are closed under these operations, even though CFLs
overall are closed.

(71)

(72)

(74)
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Ligation offers one further complication, based on the fact that it may
occur so as to formircular molecules. We will denote this variatiarG ©,
but we are left at a loss as to how to represent it linguistically, since the
strings have no beginnings. However, ean define the results of scission
of languages formed by this operation. Assuming in the simplest case that
we perform a circular ligation of each individual strind.iand then cut each
circle once at every possible position, we arrive at the language

cut(uico(L)) ={ vu|uvOL} =cvcL) (75)

which is the set of circular permutations of each string. As it happens, all of
the language families in the Chomsky hierarchy are closed under this opera-
tion (though, again, deterministic CFLs are not); a constructive proof of this
for CFLs is given in [Hopcroft and Ullman, 1979]. ClosureLw$© really

only amounts to circular ligation of repeated linear ligations, i.e.
LIGO(LIG*(L)), since a string can only be circularized once. Thus, our clo-
sure results still hold for this extension.

Biologists can manipulate DNA molecules by cutting them at specific
sites usingrestriction enzymesand then ligating the resulting fragments
(also in a sequence-specific manner). The closure of so-saliethg sys-
temsunder these domain-specific operations has been studied using formal
language theory [Head, 1987]. Natural recombination, as between homolo-
gous chromosomes during meiosis, is an exceedingly important biological
phenomenon that bears some resemblanshuffleoperations on languages
[Hopcroft and Ullman, 1979].

5.3 Closure under Evolution

Consider the following linguistic formulations of several known modes of
rearrangement at a genomic level that occur in evolution—duplication, inver-
sion, transposition, and deletion:

DUP(L) ={ xuuy| xuyDL}

INV(L) = { xURy | xuyDL} where X, Y, u,vDZEL,A
XPOYL) ={ xvuy| xuvyDL} and LOSE\A
DEL(L) :{ Xy | xuyDL}

We see immediately that CFLs (and RLs, for that matter) could not be
closed undeDUP since this operation creates direct repeats of arbitrary
length, as in (14), which are greater than context-free. What is somewhat
more surprising, given the results of the previous section, is that the CFLs
are also not closed under eitligy or XPOS This can be seen by the effects
of the operations on inverted repeats, from whiehh can make direct re-
peats anckPOScan make pseudoknot patterns; formal proofs of this follow.

Consider the CFL selected from among the inverted repeats—that is, from

(76)
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the languagé of (40) — by intersection with a regular expression:
Lcy = Le n (g+c)*at(g+c)* :{ xatxt | x[Hg,c}* } (77)

We can use intersection with a different RL to examine only the inversions of
this language that occur over suffixed gf (i.e. for whichy=¢ in (76Db)):
INV(Lcp n (g+c)*at :{ xxatlxD{g,c}* } (78)

The ‘at’ can only arrive at the end of the string as the result of inversions of
the suffix starting just before the ‘at’ in each strind-g{. We can then use
a homomorphism mapping ‘a’ and ‘t’ & such agp given for (45), to get rid
of the final at's and leave a simple copy language as in (14). Since we have
arrived at a non-CFL, and every other operation used preserves CFLs, it must
be the case that CFLs are not closed under inversion, and the specific case of
inverted repeats yields direct repeats.

Transposition is dealt with by a similar route, first selecting a different
subset of inverted repeats as our test CFL:

Lo =Le n gtatttct ={ giaitici |ij=1} (79)
We now force transpositions that again occur over suffixes of strifgsyjn

such thai in (76c¢) covers the g's and aiscovers the t'sy covers the C’s,
andy=¢:

XPOSLcy) n grarcits ={ giaicitl |i,j=1} (80)
But this is a pseudoknot language—in fdqt,of (56), which we have al-
ready seen is greater than context-free. We conclude that CFLs are also not
closed under transposition.

Among the evolutionary operators, CFLs are closed only under deletion.
To show this, let us temporarily supplemérﬁm with the character §, and
design a homomorphism for whiegib)=b for bDZELA—& andg(8)=. We
will also set up a GSNMG with transitions as given in Figure 16. Then, we
see that the deletion operator can be defined as

DEL(L) = G(¢}(L)) (81)

The inverse homomorphism will distribute any number of §'s in every possi-
ble position in every string df, so we can use the first two such 8’s in each
resulting string as end markers for deletions, and be assured of arriving at
every possible deletion, as EL. We accomplish those deletions with
(which also disposes of the §'s), as the reader may confirm. Since CFLs are
closed under inverse homomorphism and the action of GSMs, we know that
DEL(L) will be a CFL. Similar results hold for RLs, ILs, and recursively
enumerable languages, though it happens that CSLs need not be closed under
DEL becausés is note-free.

Note that minor variations @& can be used to prove the closure proper-
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§le §le
| >{) | ®

where b DZDNA_§

Figure 16. The Generalized Sequential Maclie

ties of the prefix and suffix operations given in (73), and in fact those results
can be used to demonstrate the closure properties of the deleted fragments
themselves, whether linear or circular. In addition, the definitio@saofd@

may be modified to reflect other, domain-specific models in order to take ad-
vantage of the same proof methodology. For exang@,can be defined to

be a recognition sequence that delimits “directed” deletions (see section
2.8.2). Using a combination of two bracketing deletion markers, we might
model the splicing that occurs in RNA processing (see section 2.3.4), or in-
deed even the inverse operation of inserting languages (at least RLS) into ex-
isting languages at designated points; this suggests that the evolution of in-
terrupted genes may not in itself have contributed to their linguistic
complexity.

6 Structural Grammars for Nucleic Acids

As noted, the DCG gene grammar presented previously was largely creat-
ed without regard for the linguistic status of DNA, but rather as a rapidly-
prototyped, reasonably efficient recognizer for “real-world” search applica-
tions. This section details our efforts to adapt logic grammars to a wider
variety of biological phenomena, with formally-based conventions suitable
to the domain.

6.1 Context-Free and Indexed Grammars

Base complementarity, as defined in (33), is easily implemented within
DCGs by creating a special prefix tilde operator as follows:

~"g" --> “c”. ~"c” --> “g".

82
___nan > “t”. ""”t” > uan. ( )

Then, creating a DCG version of the formal grammar (41) specifying
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Figure 17. Am-leaf Clover (=3)

stem-and-loop structures is straightforward:

inverted_repeat --> [X], inverted_repeat, ~[X]

83
inverted_repeat --> ... . (83)

Here, the Prolog variables within square-bracketed lists indicate termi-
nals. The gap rule represents the loop, corresponding to the rule for the non-
terminal A in the formal grammar. We have noted that this non-ideal
specification is insufficient as a model, and it is also impractical in actual
parsing; however, we can implement the constrained version of (44) with lit-
tle extra trouble, using parameters and embedded code to create a concise
and workable (though inefficient) DCG for inverted repeats with specified
minimum-length stems and maximum-length loops:

inverted_repeat(Stem,Loop) --> {Stem=<0},
0...Loop.

inverted_repeat(Stem,Loop) --> {Next is Stem-1}, (84)
[X], inverted_repeat(Next,Loop), ~[X].

Itis just as easy to transcribe other formal grammars, e.g. that of (48) rep-
resenting generalized orthodox secondary structure, to their DCG equiva-
lents. Again, a practical implementation of the DCG form would allow us to
add length constraints, gaps, and other conditions to take account of “real-
world” factors. We can also write grammars for more distinctive (that is, less
general) features, such as structures in the natumeleaf clovers” like the
one illustrated in Figure 17:

cloverleaf --> [X], cloverleaf, ~[X] | leaves.
leaves --> leaf, leaves | []. (85)
leaf --> [Y], leaf, ~[Y] | [J.

As was noted above, indexed grammars can be thought of as context-free
grammars that are extended by the addition of a stack feature to nonterminal
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elements; thus they are easily implemented in DCGs, by just attaching pa-
rameters in the form of Prolog lists to nonterminals. A DCG-based indexed
grammar corresponding to (60) would be

tandem_repeat(Stack) --> [X],

tandem_repeat([X|Stack]).
tandem_repeat(Stack) --> repeat(Stack).

repeat([]) --> [I.
repeat([H|T]) --> repeat(T), [H].
while, to make theepeat rule instead play back the reverse complement

of the sequence stored on the stack, we could substitute the rule correspond-
ing to (62) as follows:

(86)

complement([]) --> [].
complement([H|T]) --> ~[H], complement(T).

Calling the top-level rule with an empty stack gives the desired results. An
indexed grammar expressing tieaf clover of (85) would be

(87)

cloverleaf(Stack) --> [X], cloverleaf([X|Stack]).
cloverleaf(Stack) --> leaves([]), complement(Stack).

leaves([]) --> []. (88)
leaves(Stack) --> [X], leaves([X|Stack]).
leaves(Stack) --> complement(Stack), leaves([]).

Compared with the context-free DCG of (85), this notation becomes
somewhat clumsy, a problem we will address in the next section.

6.2 String Variable Grammars

We have developed a domain-specific formalism cadteidg variable
grammar (SVG) which appears to handle secondary structure phenomena
with significantly greater perspicuity than indexed grammars [Searls, 1989a].
SVGs allowstring variableson the right-hand sides of otherwise context-
free rules, which stand for substrings of unbounded length. An example of
an SVG implemented within an extended DCG formalism would be:

tandem_repeat --> X, X. (89)

This requires only some minor modification to the DCG translator to rec-
ognize such variables as what amounts to indexed grammar nonterminals,
with the Prolog variable itself representing the nested stack [Searls, 1989a].
The variables, on their first occurrence, are bound nondeterministically to ar-
bitrary substrings, after which they require the identical substring on the
input whenever they recur. We can also generalize our rules for single base
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complements, to recognize the reverse complement of an arbitrary string.
This allows rules of the form

inverted_repeat --> X, , ~X. (90)
Here we have used an anonymous string variable to denote the gap, since it
is the case that. --> . Now, the rules for direct and inverted re-

peats—features that intuitively share a similar status in this domain—can
also assume a very similar grammatical structure.

Returning to our example of theleaf clover of the grammars (85) and
(88), we can now write a much more concise grammar in the form of an

SVG:
cloverleaf --> X, leaves, ~X. (91)
leaves -->[]| Y, ~Y, leaves.

We also offer economical SVG representations of the attenuator structure
of Figure 12 and the pseudoknot structure of Figure 15:

attenuator --> A, , ~A, , A
pseudoknot --> A, |, B, ,~A, ,~B.

The use of string variables can be augmented in various ways. For in-
stance, by allowing them to be passed as parameters, we can specify an un-
bounded number of direct repeats:

(92)

direct_repeats(X) --> X, _, direct_repeats(X).

direct_repeats(X) --> X. (93)

Then, by defining compositions of string variables (e.g.
~(~X) --> X. ), we can do such things as specify any number of strictly
alternating inverted repeats:

inverted_repeats(X) --> X, _, inverted_repeats(~X).
inverted_repeats(X) --> []. (94)

We have recently shown that SVGs used in the manner described up to
this point specify languages that are formally contained within the ILs, con-
tain the CFLs, and furthermore can be parsed i¥)Qime using a variation
on the Earley parser [Searls, manuscript in preparation].

6.3 Structural Grammar Examples

The SVG formalism makes it possible to describe and recognize much
more complex patterns of secondary structure, such as the following
specification of the 3' (right-hand) end of tobacco mosaic virus RNA, cover-
ing 177 nucleotides of which two thirds are base paired [Pleij, 1990]:
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Figure 18. tRNA Secondary Structure

tmv_3prime --> A, , B, ~A, , ~B,
C, .,D,~C, ,~D,E, ,F,~E, ,~F, ,
G, LH I, _,J, ,~3~,~G, ,~H, (95)
K, ,~K L ,M~L ,~M,

This pattern consists of three consecutive, contiguous pseudoknots (corre-
sponding to the variable se4¢B, C/D,andE/F), another pseudokn¢G/H)

whose gap contains an inverted repeat with a biiidje followed by another
inverted repeatK) and a final pseudokn@t/M). Another example, adapted
from [Gautheret et al., 1990], is the following grammar describing a consen-
sus secondary structure for a class of autocatalytic introns:

group_|_intron --> _, A, _,B,~A, _,C, _,
E1 — F1 — ~F1 — ~E1 G1 1 ~G1 —
D, _,~C, _,H,_,~H,_, ~D,_, (96)

This structure contains two pseudoknot patterns; (Afg) spans the entire
sequence and in fact brackets the cleavage sites/o, while the other
(C/D) is embedded in a series of stem-and-loop structures and variants.
These rules could obviously be written more hierarchically, using the ap-
propriate rules for “phrases” (such mverted_repeat from (90),
pseudoknot from (92b), and others), but even as they stand they are
significantly more readable than other grammar formalisms would be. Nev-
ertheless, they do lack the necessary length constraints to make them practi-
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tRNA(AA) --> Stem@7, “t”, base, d_arm, base,
anticodon_arm(AA), extra_arm, t_psi_arm,
~Stem$1, acceptor_arm.

d_arm --> Stem@4, “a”, purine, 1...3, “gg”,
1..3,“a", 0...1, ~Stem$1.

anticodon_arm(AA) --> Stem@5, pyrimidine, “t”,
anticodon(AA), purine, base, ~Stem$1.

extra_arm --> 3...20, pyrimidine.

t_psi_c_arm --> Stem@4, “gttc”, purine, “a”,
base, pyrimidine, “c”, ~Stem$1.

acceptor_arm --> base, “cca”.

anticodon(AA) --> ~[X,Y,Z],
{codon(AA)==>[X,Y,Z], ! ; AA=suppressor}.

Figure 19. A tRNA SVG

cal. In order to demonstrate a real parsing application, we will use a slightly
simpler case, that of transfer RNA, which is illustrated in Figure 18 and
whose typical cloverleaf structure is represented abstractly by the following
SVG:

tRNA(Codon) --> AcceptorArm, _, DArm, _, ~DArm, _,
AnticodonArm, _, ~Codon, _, ~AnticodonArm, (97)
_, TpsiCArm, _, ~TpsiCArm, ~AcceptorArm, _.

Here, a parameter is used to return the codon identity of the tRNA, which
is the reverse complement of theticodonby which it recognizes the triplet
on the mMRNA specifying a particular amino acid.

The E. colitRNA SVG listed in Figure 19 is a more practical version
[Searls and Liebowitz, 1990], again using string variables for the secondary
structure, but now combined with grammar features specifying known con-
served bases or base classes. Despite these lexical constraints, most of the
information available has to do with the folded structure of the tRNA, which
causes nested dependencies to be evolutionarily conserved even where pri-
mary sequence is not. We have here used an infix control operator ‘@’ to
specify the length of th8temstring variables. The reverse complementary
stretch uses the ‘$’ operator to constraindbstof the match, and here indi-
cates that up to one mismatch is allowed in the stem. The grammar now re-
turns a parameteXA indicating the actual amino acid the tRNA will carry;
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|?-  test tRNA(Codon,Start,End).
Parsing AgHRNA-1 (76bp)..  ParsingNKV region (730bp)...

Parse succeededin 16 ms: Parse succeeded in 583 ms:
Codon=arg, Codon=lys,
Start=1, Start=272,
End=76; End=347;
Parsing AstHRNA-L (76bp)..  Parse succeeded in434ms:
Parse succeededin 16 ms: Codon=val,
Codon=arg, Start=480,
Start=1, End=555;
End=76;
Parse succeededin 434 ms:
Codon =suppressor,
Start=558,
End=633

Figure 20. Parses of tRNAs (left) and Genomic DNA (right)

this is determined in thanticodon rule usingrecursive derivation
[Searls, 1989a], i.e. by parsing the triplet inside curly braces in the body of
the rule. This will fail on a stop codon, as occurs in bactsupressomu-
tations, in which case the latter fact is returned.

This grammar was actually created from the ground up in a few hours,
using 17 known bacterial tRNA sequences in isolation as a “training set.”
Starting with an overly constrained model based on the idealized textbook
representation, the bounded gaps and cost parameters were adjusted until the
entire set parsed. This is shown through the use of a higher-level Prolog rule
which retrieves successive database entries, measures their length, and ap-
plies the derivation operator, keeping track of CPU time, as shown at the left
in Figure 20. The grammar was then tested on genomic sequences contain-
ing tRNA gene clusters, as shown at the right of Figure 20. In this and one
other gene region, all seven known genes parsed on the first try. In each case
the codon was identified correctly, including a suppressor mutation [Searls
and Liebowitz, 1990].

An approach similar to this one is currently being pursued in the laborato-
ry of Dr. Ross Overbeek at Argonne National Laboratory [R. Taylor, person-
al communication], in the domain of ribosomal RNA molecules. These are
much larger and more complex than tRNA, with dozens of stem-and-loop
structures and several pseudoknots. The specialized parser being developed
there will assist in the classification of new molecules, using a grammar de-
rived from an alignment that takes account of “covariances” or dependencies
preserved over evolution. We are currently investigating parsing strategies
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Figure 21. A Transposable Element

that would make generalized SVG parsing practical [Cheever et al., 1991].

6.4 Superpositional Grammars

Transposable elements suchcapiatypically have long terminal repeats
that have “superimposed” on them terminal inverted repeats, as illustrated in
Figure 21. An SVG that specifies this case would be

transposon --> X, Y, ~X, _, X, Y, ~X. (98)
However, a better representation is as follows:
transposon --> W, _, W, {(X, _, ~X) ==> W}. (99)

This description uses the recursive derivation to “subordinate” the invert-
ed repeats to the more dominant terminal direct repeats—a better reflection
of the semantics of the domain, since the direct repeats are typically much
larger and better matches, and in fact the inverted repeats are not even al-
ways present. Other SVGs given previously can be similarly restated using
recursive derivation to suggest different interpretations. For example, pseu-
doknots may occur in a form illustrated in Figure 22, where theredsvd-
al stackingof the two base-pairing regions to form a quasi-continuous dou-
ble helix [Pleij, 1990]. The following rule for this form of pseudoknot, it
may be argued, tends to emphasize the continuity of the central stretch, and
its relationship to the flanking complementary regions:

pseudoknot --> A, _, ~AB, _, B, {(A, B) ==> AB}. (100)

We have previously presented similar sorts of “reinterpretations” of atten-
uator structure [Searls, 1989a], which are better at capturing the dual nature
of these sequences, in that they use a recursive derivation to specify the alter-
native secondary structure separately.

Recursive derivation, used in this way, allows substrings to be parsed
more than once within a single overall parse. We can generalize this to a no-
tion of superpositiorof grammar elements, by defining an appropriate opera-
tor ‘&’ (after [Pereira and Shieber, 1987]) as follows:

X &Y > W, {X ==> W}, {Y ==> W}. (101)

This superposition operator, which requires its operands to exactly coincide
on the input, allows for some novel views on structures discussed before:
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Figure 22. Coaxial Stacking in a Pseudoknot

tandem_inverted_repeat --> W & ~W. (102)
double_inverted repeat --> (X, ~X) & (Y, Y).

The first rule expresses the fact that the superposition of a sequence with its
own reverse complement is an ideal inverted repeat, per the language

(38). The second rule shows how an ideal double inverted repeat,fsfin

(51), may be specified as the superposition of an inverted repeat with a direct
repeat.

Superposition in effect acts to “disconnect” elements of the grammar from
the usual strict consecutivity, as do gaps. In combination, these two features
permit, for instance, specifying a promoter that has a stretch of Z-DNA (a
change in the twist of the double helix that can occur where there are alter-
nating purines and pyrimidines) occurring anywhere within it, even in super-
position to other important lexical elements — which in fact is likely to be the
case:

promoter & (_, zDNA, ) (103)

Thus, superposition may prove to be an important element of functional
grammars, which we will examine in the next section. For example, Z-DNA
is actually most often associated with enhancers, which are even more
“loosely connected” in that they can occur anywhere in the general vicinity
of gene promoters, in either orientation, sometimes as direct repeats. Pro-
moters themselves, in fact, can overlap the transcription units they control
(cf. RNA polymerase Ill promoters), and even coding regions can coincide
in certain phage [Lewin, 1987]. This suggests a need for a general capability
to specify arbitrary relations between the spans of different features, similar
to Allen’s interval calculus [Allen, 1983]. In fact, the superposition and gap
operators suffice. We can, for instance, combine them to create a subsump-
tion ordering of alternative interpretations for an elemfpreceding” an
elementy:

(X.,Y) < (X,_,Y) < ((XD&(LY) (104)
The first case, in whiclf begins immediately afteX ends, is subsumed
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Figure 23. Partial Order of Superposition

by the second case, whefean begin any time aftet ends; this in turn is
subsumed by the third case, which only requires Yhaot begin beforeX

does, nor end befoé does. We have generalized this to a partial order, il-
lustrated in Figure 23, that is arguably complete with respect to possible rela-
tions between spans of features [Searls, 1989D].

If, in the definition (101)X andY were not string variables but were in-
stantiated to the start symbols of two distinct grammars (which is allowed by
the definition) then clearl)X&Y would produce théntersectionof the lan-
guages defined by those grammars [Pereira and Shieber, 1987]. The conse-
guences of this will be explored in the next section.

7 Functional Linguistics of Biological Sequences

To this point we have dealt formally only with thieucturalnature of nu-
cleic acids, which is amenable to linguistic formulation because of its rela-
tive simplicity; we will find that gunctional or informational view of the
language of biological sequences is less clear cut. This in no way weakens
the results presented to this point. The closure properties derived for opera-
tions on nucleic acids, for example, applyato/ language encoded in DNA
or in any other string for which those operations are defined. Rather, the
greater richness of the language of genes and proteins indicates all the more
the need for a well-founded descriptive paradigm. Moreover, it will be seen
that the most interesting aspects of biological languages may reside at the
point where structural and functional components interact.

A functional view will also allow us to expand our horizons beyond the
relatively local phenomena of secondary structure, to large regions of the
genome or even entire genomes (represented formally, perhaps, as strings de-
rived by concatenation of chromosomes). This will allow us in turn to rea-
son linguistically about processes of evolution, at least at a conceptual level.
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It may be supposed that this distinction between structural and functional
linguistics corresponds to the conventional one drawn between syntax and
semantics. There is much to recommend this, insofar as gene products (i.e.
proteins) and their biological activities may be thought of asrtbaningof
the information in genes, and perhaps entire organisms as the meaning of
genomes. On the other hand, the gene grammars presented earlier clearly
demonstrate a syntactic nature, and as such grammars are further elaborated
with function-specific “motifs” it may be difficult to make a sharp delin-
eation between syntax and semantics. Ultimately, the semantics of DNA
may be based on evolutionary selection; a certain view of syntax may allow
sequences that do not support life (or not very well), just as syntactically-
valid English sentences may nevertheless be nonsensical. The discussion
that follows will not attempt to resolve where such a line should be drawn,
though the potential utility of the distinction should perhaps be borne in
mind.

7.1 The Role of Language Theory

In examining the functional aspects of the language of biological se-
guences, it becomes important to set out more precisely the goals of a lan-
guage-theoretic approach. There are at least four broad roles for the tools
and techniques of linguistics in this domaspecification, recognition, theo-
ry formation,and abstraction. By specification we mean the use of for-
malisms such as grammars to indicate in a mathematically and computation-
ally precise way the nature and relative locations of features in a sequence.
Such a specification may be partial, only serving to constrain the possibilities
with features that are important to one aspect of the system. For example,
published diagrams of genes typically only point out landmarks such as sig-
nal sequences, direct and inverted repeats, coding regions, and perhaps im-
portant restriction sites, all of which together clearly do not completely
define any gene. However, a formal basis for such descriptions could serve
to establish dingua francafor interchange of information, and a similar ap-
proach may even extend to description of sequence analysis algorithms, as
will be seen in a later section.

Moreover, such high-level descriptions can merge into the second role for
linguistics, that of recognition. This simply refers to the use of grammars as
input to parsers which are then used for pattern-matching search—that is,
syntactic pattern recognition—of what may be otherwise uncharacterized ge-
nomic sequence data. We have seen that, in practice, these uses of linguistic
tools tend to depart from the purely formal, for reasons of efficiency, yet a
continued cognizance of the language-theoretic foundations can be impor-
tant. As an example, the discovery of pseudoknots in RNA has spurred the
development of new secondary structure prediction algorithms to improve on
programs that, possibly without the developers explicitly realizing it, were
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limited to dealing with context-free structures [Abrahams et al., 1990].

The third role of linguistics is for the elaborationdafmain theorieshat in
some sense model biological structures and processes. In this case, other
grammatical objects in addition to terminal strings (e.g. nonterminals, produc-
tions, and even parse trees) would have specific biological semantics attribut-
ed to them, and would be developed as postulates that are testable by parsing
actual positive and negative exemplars. A number of possibilities along these
lines will be discussed in section 2.9 of this article. Machine learning tech-
nigues could be expected to be most useful with regards to this role, to the ex-
tent that they could be made to assist in theory formation and modification.

The fourth role of linguistics, that of abstraction, can be seen as the most
conceptual insofar as its goal would be an understanding of the language of
biological sequences viewed mathematically, purely as sets of strings that are
at some level meaningful in a biological system. One way to define such a
language would be to imagine the set of all genomes that exist in viable
organisms; however, this is severely limiting insofar as there are probably
many such strings that have never existed, yet would support life. This dis-
tinction, between the set of strings that exist and the setahaixist, paral-
lels one drawn in natural language, betweperformanceand competence
[Chomsky, 1965]; performance refers to actual instances of the use of lan-
guage, while competence refers to the intrinsic capabilities of users to gener-
ate and recognize a language. An orientation toward the latter, in any domain,
can be expected to lead to more universal, intensional descriptions than an ap-
proach based simply on inventories of extant strings. Of course, such incom-
plete sets of instances may be important sources of information in developing
linguistic descriptions, e.g. consensus sequences for regulatory regions. In
many cases, though, we may derive notions of competence by observing the
biological machinery that manages the strings, e.g. transcription, translation,
etc. As long as our knowledge of these phenomena remains incomplete, how-
ever, these languages must remain abstractions, particularly at the level of
genomes. Still, we will see that they may constitute tools for abstract reason-
ing and thought experiments, and the sensation that they are unfathomable
must not discourage the practical application of linguistic techniques, and the
ideas gleaned from this type of analysis, in the other roles described above.

7.2 The Language of the Gene

In some situations genes are superimposed so as to create ambiguity, e.g.
in the cases of multiple start sites for transcription, alternative splicing, and
even “nested” genes. Thus, over the same stretch of DNA there would be
multiple leftmost derivations for any grammar specifying a gene, with each
derivation corresponding to a gene product. Such ambiguity suggests that
the corresponding language is nondeterministic, and thus not regular. How-
ever, it must be emphasized that this is not in itself a formal proof that the
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language of DNA is not regular, since we have prejudiced our grammar by
requiring that it capture the notion of “gene” as a nonterminal, indeed one
that corresponds to a single gene product. As was the case for the formal
language of (19), there may be other, perhaps less intuitive grammars that are
unambiguous, specifying the same language as the ambiguous gene-oriented
grammar. For example, much of the observed variation is post-transcription-
al in nature, so that it may be that the ambiguity is not actually inherent at the
DNA level, but resides in other cellular processes, beyond the gene itself.
Thus, perhaps a transcript-oriented grammar might be unambiguous. How-
ever, we know that transcription itself can vary over time within the same re-
gion, as in the case of overlapping “early” versus “late” transcripts in certain
viruses; even at the level of coding regions there is overlap, including in-
stances of multiple reading frames. Thus, there seems to be good empirical
evidence that any grammar related to genes, or purporting to model underly-
ing biological processes at the gene level, would not be regular.

We arrive at this notion of ambiguity of gene products by viewing deriva-
tion as analogous to gene expression. In terms of information encoded, how-
ever, we must ask if such superpositiorrequired of the language, rather
than simply allowed. The importance of this is that it would necessitate the
intersectionof languages, under which some important language families are
not closed. Returning briefly to a structural theme, consider attenuators (Fig-
ure 12), which we gave as examples of strings that are ambiguous as regards
the language of secondary structure since they allow alternative folding.
However, from a functional perspective, the genes that use attenuators re-
quire this secondary structure for the regulatory mechanism to work, so that
the language must in fact intersect the two cases. Since the mechanism de-
pends on orthodox secondary structure, it is CFLs, as in (54), that are being
intersected, but the resulting language is greater than context-free because it
necessarily contains direct repeats. While it happens to be an IL, it is a fact
that any recursively enumerable language can be expressed as a homo-
morphism of the intersection of two context-free languages, so that there are
potentially even more serious linguistic consequences to superposition of
non-regular elements.

The process of gene expression by its nature suggests that genes are
superpositional in another sense, reflecting the successive steps of transcrip-
tion, processing, and translation, all encoded within the same region. To the
extent that we wish any descriptive grammars to model these underlying pro-
cesses, which occur at different times, in different places in the cell, and
using different mechanisms, it would seem that such processes should be
represented by separate, well-factored grammars. The projection of all the
corresponding functional and control elements for these processes onto the
same region of DNA should then be captured in a requirement that the re-
spective grammars all parse that DNA successfully. Note that this would
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also make it much easier to model situations such as the transcriptional vari-
ants that produce untranslatable messages, as described for the globin gene
grammars above; all that would be required would be to alter the RNA pro-
cessing grammar (that recognizes splice junctions) and drop the translation
grammar altogether.

If we accept that separate cellular processes should be modelled by dis-
tinct grammars, and that the underlying language represents the superposi-
tion of the resulting distinct languages, then again the language may tend up-
wards on the Chomsky hierarchy by virtue of intersection. If it is CFLs that
are being intersected, it may also be the case that we can never know the
final status of the language, since it is undecidable whether the intersection
of CFLs is a CFL or not. For that matter, even if we could arrive at a con-
text-free grammar that completely described all aspects of a gene, we might
not be able to show that it was non-regular, since in general it is undecidable
if nondeterministic CFLs (or above) are equivalent to some RL [Hopcroft
and Ullman, 1979].

7.3 The Language of the Genome

The notion of derivations corresponding to gene products would appear to
be a useful one, since it formally establishes the analogies between parsing
and gene expression, and between parse trees and gene structure, which are
inherent in the first sample gene grammars given above. It also allows us to
adapt the discussion to wider questions of the differential control of gene ex-
pression in different tissues and developmental stages. For example, if we
equate successful parsing with gene expression, we must concede that a sub-
string that is a gene at one time may not be a gene at another. This is trou-
blesome, unless we view genes in the context of the genome as a whole. If
the genome is inherently ambiguous, then multiple global derivations could
correspond to particular cell types at particular times and under particular
conditions. Any given derivation may or may not call for the gene sub-
derivation in question. From this viewpoint, it might be better to name the
corresponding nonterminakpressed-gemather than simplgene

Does this mean, though, that in agiyenfixed global state of differentia-
tion, etc., genes and gene expression may yet be deterministic? For, at a
local level the apparent ambiguity of overlapping genes, or of expressed vs.
unexpressed genes, does not mean that such an ambiguity necessarily exists
at any given time in the cell; there may be external, regulatory factors that
“tip off” some cellular recognizer and thus specify one or the other of the
available parses. In this model there could be distant elements specifying
such regulatory factors in an overall genomic language, acting against ambi-
guity that may otherwise be present within isolated segments. Indeed, gram-
mar-based approaches have been proposed for simulating gene regulatory
systems [Searls, 1988], and for modelling their genomic arrangement using
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transformational grammars (see section 2.9) [Collado-Vides, 1989b]. How-
ever, such mechanisms by and large exert their effects via exogenous ele-
ments (such as DNA-binding proteins) whose biochemical activity would
seem to be necessarily “ambiguous,” if only at threshold levels. It is difficult
to imagine a language recognizer sophisticated enough to precisely simulate
regulation that ultimately depends on the physical chemistry of molecules
moving through a cell. Thus, whatever the cell might do to chart its fate de-
terministically, would seem to be inaccessible to any linguikgseriptionof

the genome out of context.

Perhaps the most telling evidence for this view is the totipotency of germ-
line DNA, and the pluripotency of many somatic cells. That is, not only
must the genome be ambiguous because it has the capacity to specify a wide
variety of cell types at different times and places in development, but any
counterargument based on a notion of deterministically programmed
differentiation fails in the face of the many examples of dedifferentiation and
developmental plasticity in biology—as clear a case for nondeterminism as
could be wished. Therefore, we are left with a strong sense that the language
of genes and even of the genome as a whole, must be at least context-free.

Recently an interesting proof has been offered for gene regulatory sys-
tems being greater than context-free, based on the fact that there need be no
particular spatial relationship on the genome between genes coding for solu-
ble regulatory elements and the genes those elements regulate [Collado-
Vides, 1991b]. This being the case, an array of such regulatory genes and
their target genes, which clearly form dependencies, are presumably free to
arrange themselves so as to cross those dependencies, so that the language
describing such arrangements could not be a CFL. (This is formally argued
using a method of proof involving thmumping lemmdor CFLs, to be de-
scribed in section 2.8.1.)

7.4 The Language of Proteins

Proteins also have three-dimensional structure, whose nature suggests that
the functional language of proteins may in fact be structural in the same
sense as nucleic acids, with similar linguistic consequences. Figure 24 de-
picts a hypothetical folded protein molecule, illustrating in a highly schemat-
ic way the conformational relationships among major secondary structure
features likea-helices (the cylinder at the bottonflystrands (the arrows in
the center), anfl-turns (the “kink” iconified at the upper right).

Pattern-directed inference systems like Ariadne [Lathrop, Webster and
Smith, 1987] have been used to detect amino acid sequences that are likely to
produce such structures, combining statistical evidence for the features them-
selves with a hierarchical model of their higher-level ordering, captured in
what amounts to a regular expression. Such an approach must necessarily
deal with patterns seen on the unfolded string of amino acids, but clearly
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Figure 24. Protein Structure

these physical features also interact with each other in their three-dimen-
sional conformation, not only through hydrogen bonding but also where
charged moieties are brought into juxtaposition, or space-filling interactions
occur, etc. These may be expected to display correlated changes over the
course of evolution—i.e., dependencies.

Such interactions are suggested by the dotted lines befivseands in
Figure 24; note, however, that if those dotted lines are extended as the
molecule is unfolded into a linear representation, the interactions on the right
exhibit nested dependencies, and those on the left crossing dependencies, as
in Figure 4. As we have seen, the former are characteristic of CFLs, and the
latter of CSLs. Other such dependencies may be found, for instartce, in
helices which have one face in a hydrophobic milieu, and the other in a hy-
drophilic one; this will result in a series of periodic crossing dependencies.

The nested and crossing dependencies we have illustrated in inverted and
direct repeats in nucleic acids are much more straightforward, corresponding
to complementarity and equality of individual bases, respectively. Neverthe-
less, the dependencies in proteins, though more complex and varied (e.qg.
charge, bulk, hydrophilicity, catalytic activity within active sites, etc.) are
likely to be tremendously important in terms of structure and function. Thus,
it would appear that more sophisticated linguistically-based approaches to
protein structure would be well-advised.

How might such non-regular functional languages interact with the non-
regular secondary structures that occur in nucleic acids? They may, of
course, be completely segregated, with the former confined to coding regions
and the latter to control regions, introns, and structural species like tRNA and
rRNA which have no polypeptide products. It is interesting to speculate,
however, that nature with its usual parsimony may have elected to overlap
phenomena on the DNA, for instance by favoring processed mRNA species
that form secondary structure, for purposes of stability, transport, etc. We
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know that the resulting language intersection may act to increase the linguis-
tic complexity of the system, particularly since both contributing languages
may have nested dependencies, which in the case of simple inverted repeats
do lead to a promotion from CFLs to ILs. In the next section, however, we
will explore the intriguing possibility that functional CFLs may not even re-
quire context-free grammars, beyond what already exists in nucleic acid sec-
ondary structure, for their expression.

7.5 Structurally-Derived Functional Languages

The grammar of (48), which describes ideal orthodox secondary structure
in nucleic acids, defines oparticular CFL. It is interesting to note, though,
that the capability to form secondary structure, as embodied in this grammar,
can be “harnessed” to express other CFLs. We have seen this in several
proofs, which have used intersection with RLs together with homomor-
phisms to arrive at distinct CFLs, such as (45) which produces (7). As an-
other example, consider languages consisting of true (as opposed to biologi-
cal) palindromes, (11). Using the langudggof orthodox secondary
structure determined by the grammar (48), and a homomorphism based on
o(g)=¢(c)=0, andp(a)=g(t)=1, we can see that

Lp1={ wwR|w0{0,13* } = o(L, n (g+a)*(c+t)*) (105)

Again, we have generated a new CFL from the generic language of sec-
ondary structure, and it would appear that this might be a fairly general ca-
pacity. However, for this example we have been forced to use all four
bases—purines for the front of the palindrome, and pyrimidines for the
back—raising the question of whether the utility of this tactic will be limited
by the size of the DNA alphabet. For instance, it might appear that we
would be unable to ude, to express the language of true palindromes over
an alphabet of size four:

Lpp={ wwR|w0{0,1,2,3) } (106)

As it happens, though, we cancodethis larger alphabet into dinucleotides
via a homomorphisny, defined as follows:

wO)=g9  W@)=ga  W@2)=ag  Y(B)=aa
pO)=cc  yMD=tc  YA=ct  Y@B=tt
As before, we will use purines for the front of the palindrome and pyrim-
idines for the back, but this time we use a dinucleotide to encode each digit
in the final language. We must distinguish front and back digits for the mo-

ment, using the hat notation, in order goto be a function, but we can strip
off the hats later with another homomorphism:

®X) =@X) =x for x{0,1,2,3} (108)

(107)
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In order to make use of the encoding, we must in fact apgg anin-
versehomomorphism (under which CFLs are also closed). With these exer-
tions, we see that it is indeed possible to specify the desired language:

Lp2= oW(Lo n ((g*a)(@a) (M) (c™D)*) (109)

In fact, with appropriate encodings we should be able to specify any de-
sired final alphabet, and with more sophisticated regular expressions we
could take advantage of the ability Igf to specify iterated or nested struc-
tures as well. The remarkable thing about these specifications is that a vari-
ety of CFLs are being expressed using the “general purpose” stack mecha-
nism of secondary structure together with only an RL in the primary
sequence and some “interpretatigqnfl.

If the notion of the interpretation as a composition of a homomorphism
with an inverse homomorphism seems odd, note that nature already uses en-
codings of this type, in the form of amino acid codons:

Y(ser)=ucg Y(sep)=uca Y(ser)=ucc Y(sey)=ucu
Y(phe)=uuc  Y(phe)=uuu  YP(mety)=aug etc.... (110)
@x)=x for xOfser,phe, met;:- }

where now ranges over triplets from the slightly different alphabet of
RNA, Srna={g.c.a,}. In this case, the interpretatigrl(w) forwO 330 )

will yield the corresponding polypeptide of length(ignoring questions of
alternative reading frame and stop codons). Keestablishes the encoding,
and@ captures the degeneracy of the triplet code. It is easy to imagine other
homomorphic interpretations of a similar nature being embodied, for in-
stance, in DNA binding proteins involved in gene regulation (which in fact
are often associated with regions of dyad symmetry).

This leads us to the question of whetary CFL, e.g. arbitrary functional
languages, could be expressed by an RL superimposed on sequence with sec-
ondary structure, together with some interpretation to act as an “adaptor” to
the new domain. An important characterization theorem [Chomsky and
Schutzenberger, 1963] states that any CFL can in fact be specified as a ho-
momorphism of the intersection of some RL with a language belonging to a
family known as thesemi-Dycklanguages. A semi-Dyck languaBe con-
sists of all well-balanced, properly nested strings tfpes of parentheses;
for example, foiD3 consisting of ordinary parentheses, square brackets, and
curly braces, we would have

[{(}IDK[I} ©Obs
(DIl Db (111)
{l(H] oOpg

The grammar describing semi-Dyck languages is tantalizingly close to
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that of (48) forL,, since open parentheses must be matched by closed ones
in a manner quite similar to base-pairing in secondary structure. Moreover,
the minimum alphabet required for a semi-Dyck language to express any
CFL, in order to be able to encode larger alphabets via inverse homomor-
phisms [Harrison, 1978], is one with two types of parentheses for a total of
four elements—exactly what nucleic acids provide. However, nucleic acid
secondary structure in fact represents a full or two-sided Dyck language, i.e.
one for which corresponding parentheses facipgositedirections, as in
(111b), can also pair. In addition, we know that non-orthodox secondary
structure is allowed, such as pseudoknots, which are analogous to (111c).
Thus, we must leave open the question as to what the exact expressive power
of this paradigm may be, not to mention the question of whether any use is
made of itin vivo.

8 Evolutionary Linguistics

Evolution is a process that provides many interesting complications in the
linguistic analysis of biological systems, as suggested by the closure results
observed for the evolutionary operators of (76). In this section we will in-
vestigate some of those complications, show how grammars may be applied
to describe not only evolution itself but also algorithmic tools used to com-
pare strings that have undergone evolutionary change, and finally, discuss the
prospects of extending phylogenetic analysis from strings to languages.

8.1 Repetition and Infinite Languages

We have seen from the closure results given previously that typical evolu-
tionary rearrangements may in the right circumstances lead to a “jump” up
the Chomsky hierarchy. For example, duplications create copy languages,
which are not CFLs. However, we must take care to note that, simply be-
cause a language contains strings with duplications, does not mean that it is
greater than context-free—once again, unbounded duplications mtest be
quired(or, in an evolutionary sense, actively maintained) for this to be so.

In fact, it can be shown that, even in an RL, sufficiently long strimggst
contain substrings that are allowed to occur there as tandem repeats and still
leave the resulting string within the given RL. To wit, for the FSA recog-
nizing an RL to recognize any string longer than the number of nodes or
states in that FSA, some of those nodes will of necessity be visited more than
once, so that there must beyclein the directed graph of the FSA. This
being the case, it must also be possible to traverse thatarycteimber of
times, and thus the original string can have any number of tandem repeats at
that position, and still be guaranteed to be in the RL specified by that FSA.
This reasoning, a variation on the “pigeonhole principle,” is known as the
pumping lemmdor RLs. There is a similar result for the CFLs, commonly
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used to prove non-context-freeness, which essentially says that for sufficient-
ly long strings derived from a context-free grammar some nonterminal must
recur in the same subderivation, and this subderivation can thus be “pumped”
any number of times.

This in itself need not have far-reaching consequences, since the repeat
may only be of length one—in fact, simple gaps in the DCGs we have given
satisfy the requirement. However, it does raise an issue related to the arbi-
trary extent of the repeats. If an RL contains only strings shorter than the
number of nodes in its FSA, it need not have a cycle, nor a tandem repeat.
This would necessarily be a finite language, and ingiagfinite language is
an RL; this can be seen from the fact that a finite set of strings can be
specified by a finite, regular grammar by simply listing every terminal string
in the language as a disjunct arising from the start symbol.

Thus, if the language of DNA is indeed not regular, it must be infinite.
This is an assumption that has been implicit in the grammars we have written
to this point, which perhaps should be examined. It could be argued that the
set of all DNA molecules (or genes, or genomes, etc.) that have ever existed
is finite, so that the abstraction of the language of DNA is regular. However,
recall that our preferred notion of language as abstraction deals with-the
pacity of such languages to encompass all syntactically correct variations.
DNA must be potentially non-regular, certainly to the extent one believes
that it can specify an infinite variety of life—i.e. that there can be no com-
plete list of possible genomes, such that no additional genome is imaginable
that is different by even a single nucleotide from one already in the list. The
fact of evolution adds particular force to this argument, when we realize that
it is possible for the language to evolve entirely new capacities; indeed, it
has apparently done this over time, e.g. at the point that eukaryotes arose.

It might also be argued that a biological language must constrain the
lengths of strings, since there are practical problems with arbitrarily large
genomes. For example, the bacteriophage lambda protein capsid places a
limit on the size of the genome it must encapsulate; not much more than
50,000 nucleotides can physically fit inside. (In fact, a form of pumping
lemma applies to this phage: since the total protein in the capsid exceeds the
coding capacity of the genome, it follows that capsid proteins must be
“repetitive”, i.e. many identical proteins are employed in a crystalline array
to achieve a large enough structure to contain the genome [Watson et al.,
1987].) Thus, there would seem to be a finite number of possible phage
lambda genomes. However, one can imagine mutations that alter the capsid
proteins to allow an additional nucleotide insertion or two, and it becomes
difficult to say where the limits are, in a system which contains the potential
for respecifying the rules of its own game. Again, if we widen this to in-
clude every species that could theoretically exist, a finite language is even
harder to conceive, though there may be no formal nonexistence proof. In
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broader terms, even the alphabet is conceivably subject to change, as indeed
may have occurred in prebiotic evolution.

Such discussions may only be of theoretical interest, since if any succinct
specification is indeed possible for the potential combinatoric variation of even
the relatively minuscule phage lambda genome, it may well require a powerful
grammar that is “artificially” regularized with constraints, but which in out-
ward form and every other respect is non-regular. The invocation of semantic
constraint or selection might well serve this purpose. Retreating somewhat
from this broadest possible abstraction, though, we can examine the case for
infinite individual features, such as inverted repeats. There are probably only
finitely many Type Il restriction enzyme recognition sites, for example, since
these are mostly inverted repeats either four or six nucleotides in length, which
is about the limit of what these proteins can span on the DNA (ignoring for the
moment the possibility of “changing the rules”). Are other inverted repeats of
interest also limited in similar ways, e.g. is there a longest practicable stem
structure in an RNA molecule? Even if a consensus for such an absolute maxi-
mum could be arrived at, it would seem that this misses the point that the self-
embedding rule permitting unlimited recursion expresses the mecheaical
pacity of nucleic acids to form these structures in arbitrary lengths, and to
properly capture the nested dependencies they entail.

We began this section by saying that the fact that strings in a language
contain duplications does not imply that that language is not a CFL or RL.
On the other hand, we can infer from the pumping lemmas that any CFL or
infinite RL must allow strings with arbitrary numbers of duplications. It is
only if direct repeats of arbitrary extent are for some reason required by the
genome that it must be greater than context-free on this account. One sense
in which duplications may be said to be required is an evolutionary one,
since a primary mechanism of adaptation and change is for a gene to be du-
plicated and then for the copies to diverge. In fact, we can view the strings
that are “pumped” in the pumping lemma as genes themselves, specified at a
general enough level to allow divergence after they are duplicated. (They
need not be completely general, though—a specific globin gene, for instance,
can be thought of as having been pumped in this manner to create the globin
gene regions.) For that matter, a diploid genome itself may be said to be a
copy language, with the duplication required for the generation of diversity
by recombination between homologous chromosomes.

The argument that duplications are required since they reflect a mecha-
nism of evolution is somewhat indirect, if not circular; we could make a
stronger case that the functional language of DNA is greater than context-
free if functional duplications were required by the physiology of the cell.
One example might be immunoglobulin variable region gene copies; though
they are not exact duplicates, they serve the same function and their arrange-
ment is required to generate diversity economically. Gamplificationis
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another mechanism whereby gene copy numbers (in this case, exact copies)
increase or decrease according to physiological demand. Once again, we see
that thegenerationof specific such duplications can occur by pumping RLs

or CFLs, but anyequirementhat duplications of arbitrary composition be a
feature of a general functional language in order for organisms to survive
would seem to raise the abstracted language beyond context-free.

8.2 Mutation and Rearrangement

A simple point mutation can be modelled grammatically by a rule that
produces a side effect on the input string, e.g. through the use of terminal re-
placement in DCGs:

point_mutation([From],[To]), [To] --> [From]. (112)
This rule consumes no net input, but effectively just overwrites the base
From with To. Such rules can be used in actual derivations by leaving
uninstantiated the remainder portion of the difference list or span, e.g.

(_, point_mutation(X,Y), ) ==> Input/Output. (113)

wherelnput but notOutputis initially bound, will produce every version of
Inputin which X's have been mutated ¥s. We can write other grammars
to delete and insert bases:

deletion(X) --> [X].
insertion(X), [X] --> []. (114)

We can also generalize these rules for single base mutations to use string
variables instead for “block” mutations, e.g.

substitution(From,To), To --> From. (115)

With this expanded repertoire, we can succinctly represent a range of ge-
nomic rearrangements that occur on an evolutionary scale, corresponding to
the formal definitions of (76):

duplication, X, X --> X.

inversion, ~X --> X.

transposition, Y, X --> X, Y. (116)
deletion --> X.
This then allows us to write the most “top-level” rule of all, that for evolu-
tion itself:

evolution --> [] | event, evolution.

event, X --> X, (117)
(inversion|deletion|transposition|duplication).



Figure 25. Inversion

This simply states thatvolutionconsists of areventfollowed by more
evolution. The rule foeventis just a disjunctive list of possible rearrange-
ments, and the variab)allows for arbitrary excursions down the molecule
to the site where the event is to occur. We have employed a version of this
grammar, which uses a random number generator for event and site selec-
tion, to simulate such evolution at the level of blocks of sequence.

More sophisticated rearrangements can also be described. For instance,
an arbitrary number of duplications and reduplications can be accomplished
with

duplication, X, X --> X | duplication, X. (118)

which consumes a string and replaces two copies, but can also recursively
call itself first. Combined with other forms of mutation, such a rule could,
for instance, model saltatory replication involving duplications of duplica-
tions, etc., postulated to occur in mouse satellite DNA evolution [Lewin,
1987].

Some inversions are thought to occur as a result of homologous recombi-
nation between inverted repeats, as illustrated in Figure 25; examples in-
clude the tail protein of phagdu, and the flagellar antigen &almonella
[Watson et al., 1987]. This situation can be described using what amounts to
a literally context-sensitive rule (though it is in fact unrestricted in format):

inversion, R, ~I, ~R --> R, |, ~R. (119)

Similarly, regions between direct repeats, such as transposable elements,
may be excised as circular elements, as shown in Figure 26. Excision can be
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Figure 26. Excision and Integration

specified using string variable replacement, returning the excised circular
fragment as a parametér,

excision(O), S --> S, X, S,
{(S,X)==>0/0}.

We concatenat8 and X using recursive derivatiogenerativelyi.e. running
the parse backwards. What is more, the structure that is gen€@#4eds a
Prolog list that has itself as its own remainder, that is, a circular list. While
these are awkward to handle in practice, they allow us to write a rule for the
reverse reaction, that of a site-spedifitegration of a circular molecule at
some substrin® which it has in common with a linear molecule:

integration(O), S, X, S --> S,
{(,S,X,S,)==>0/0}.

These and other grammars describing genome-level rearrangements are
described in greater detail in [Searls, 1989a]. Our experience indicates that
seemingly arbitrary such rearrangements can be quite concisely specified
using SVGs. Though in a pure logic implementation they are not practical
for large scale parsing, the grammar framework should be a good one in
which to house more efficient lower-level algorithms to make this practica-
ble, in a manner that will be described below.

Many of the rules in this section are unrestricted in format, though the
string variables complicate the analysis somewhat. However, we can see that
in one sense any grammar describing evolutionary change must in fact be
greater than context-sensitive, by examining the phenomenon of recursive
duplication as suggested by the grammar of (118). The ability to create any
number of duplications of arbitrary substrings on the input indicates that no

(120)

(121)
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linear-bounded automaton could recognize such a language, since these au-
tomata are limited to space which is linear in the size of the input, while the
grammars can “grow” a given input string to an arbitrary extent. This does
not mean that the strings of a language which igpthductof an evolution-

ary grammar are necessarily greater than context-sensitive, since we have
seen that we can recognize any number of direct repeats with an SVG that
falls within the ILs.

8.3 Comparison of Strings

The use of grammars for sophisticated pattern-matching search was pro-
posed above, where it was also demonstrated that they are likely to be better-
suited to the domain, at least in terms of expressive power, than current regu-
lar-expression based systems. Another form of search that is even more
prevalent in molecular biology, however, is based on the detection of similar-
ities between strings, rather than between a pattern and a string.

In the example grammars given above, it was seen that a simple cost func-
tion could be used to allow some degree of mismatching in the course of a
parse. Generalizing this to allow not only base substitutions but insertions
and deletions (collectivelyndelg we can conceive of a derivation from
string to string, e.g.

“gaataattcggctta”$Cost ==> “gacttattcgttagaa” (122)

where the “cost” would be, for instance, gtang edit distancédetween the
strings, or the total number of substitutions and indels required in the deriva-
tion; note how this linguistic formulation is different than the input/output
model of mutation described above. We can implement this as a DCG:

%0 --> .

[H|T]$Cost --> [H], T$Cost. % bases match; zero cost

[H[T]$Cost --> X], {X\==H}, T$Sub, {Costis Sub+1}.

[ |T]$Cost --> T$Ins, {Cost is Ins+1}. (123)

String$Cost --> [_], String$Del, {Cost is Del+1}.

However, there will be a very large number of such parses, of which we are
only interested in the minimum cost parse. The corresponding minimal parse
tree will indicate a probablalignmentbetween the initial and terminal
string, which may be significant should they be evolutionarily related. We
can use the Prolog “bagof” operation to collect all parses and determine the
minimum;

best(From$Cost ==> To) :-
bagof(Cost,(From$Cost ==> To),Bag), (124)
minimum(Bag,Cost).
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Str1$Cost--> input(Str0), %o consult chart first
{chart(Sr0,Str1,Cost-Move)}, !,

path(Move,Strl).
_$0--> ) % end of input string
> % end of test string
XIY}$Cost--> input[H[T]), % recursively find best path
{Y$Sub0==> T, (X==Y ->Sub=Sub0; Subis Sub0+1),
XIY$Ins0==> T, InsisInsO+1,
Y$Del0==> [H[T], Delis Del0+1,
minimum({Sub-sub,Ins-ins,Detdel],Cost-Move),
assert(chart(H[T][X|Y] Cost-Move)), |},
path(Move,X]Y]).

iNpUt(S,S,S). % extracts input list from difference lists

path(sub[ [R])--> [],R$ . % performs specified types
path(nsX)--> [, X$ . % aofmovesoninputsting
path(del[ |R)--> RS . Y% relative toinital sting

Figure 27. A Dynamic Programming Alignment Grammar

but this is of exponential complexity, due to the large amount of wasteful
backtracking and reparsing entailed. We have investigated the characteristics
of CKY-based algorithms for finding the minimum-cost parse, and find that
this can be accomplished inrS) time, with the performance improving the
better the fit of the original strings [Searls, unpublished results]. Others have
described “error-correcting” parsers based on Earley’s algorithm that will
find minimum cost parses for arbitrary grammars (not just the string deriva-
tions above), also in @) time [Aho and Peterson, 1972].

These results compare unfavorably with dynamic programming algo-
rithms for minimum-distance alignment that are currently used in molecular
biology, which execute in @) time, and can be further improved by tech-
niques involving preprocessing, hashing, suffix trees, etc. However, the
parsing algorithms offer the opportunity for generalization to pattern-match-
ing search at a higher level of abstraction than terminal strings, for instance
permitting differential weighting of features, mutations involving entire fea-
tures, and so on. Moreover, we have also been able to implement several tra-
ditional “algorithmic” approaches in grammar form, such as the dynamic
programming alignment algorithm given in Figure 27.

This implementation of the simplest form of distance-optimal alignment
algorithm [Sellers, 1974] uses the Prolog database to record current best
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scores and “moves” at each position of a comparison matrix between two
strings, and prevents reparsing the same path multiple times. This grammar
is clearly not optimal, and in fact it is not likely that any list-structured lan-
guage could compete with procedural languages, but the ease and flexibility
of the approach suggest the utility of grammars for rapid prototyping and
modification of such algorithms. We have done this with a number of algo-
rithms not ordinarily thought of as amenable to parsing, such as Fast Fourier
Transforms [Searls, 1989b]. When embedded in higher-level grammars, the
algorithms can then be tuned at leisure and eventually replaced with proce-
dural code or hardware, while retaining the linguistic framework where hier-
archical abstraction is of greatest benefit. As noted, we are exploring such an
approach that would use signal processing hardware to implement primitive
operations on string variables very efficiently [Cheever et al., 1991].

8.4 Phylogeny of Languages

Once we have embraced the notion of languages described abstractly
rather than as collections of instances, we can perhaps begin to extend to the
former more of the analytical tools already applied to the latter. One such
tool would be phylogenetic trees, which are currently developed in general
for single genes treated as strings. As illustrated at the left in Figure 28, rep-
resentative strings from different species may be compared to find all the
pairwise evolutionary distances, and then a tree created which postulates an-
cestral sequences and connections among them in such a way as to, for ex-
ample, minimize the total change required. Exactly how such trees should be
constructed, and distances between strings measured, is controversial and an
area of active research, but it would seem that any effective notion of dis-
tance between two objects ought to conform to the basic mathematical ax-
ioms of ametric spacggiven some functio® which measures the distance
betweera andb, this would require that:

o(a,b) =8(b,d symmetry
d(a,b) =0 iff a=b identity (125)
o(a,b) < d(a,0) + d(c,b) triangle inequality

In fact, many (but not all) common methods of measuring string edit dis-
tances based on simple mutational models do adhere to these axioms.
Consider the possibility of a phylogenetic tree of languages which, instead
of measuring degree of mutational change over individual strings, somehow
measured distances between abstracted descriptions, e.g. grammars. Thus, it
might be possible to focus the concept of evolutionary distance at a higher
level, for instance describing major rearrangements as in the evolutionary
grammars above, but perhaps also dealing with structural and functional as-
pects of the differences between organisms and groups of organisms. This
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Figure 28. Phylogenetic Trees of Strings (left) and Languages (right)

idea is illustrated at the right in Figure 28, where the leaves of the tree repre-
sent sets of strings rather than individual strings. While one could in theory
simply collect all the genomes from each of a number of individuals in a
species and call this the language, we can by now see the virtues of concise,
possibly grammar-based descriptions that freely allow variation within a
species and constrain only what is critical to the “definition” of that species.
Putting aside for the moment the known difficulties of such grammatical
inference, we consider some of the formal consequences of such an idea.

We see first that, while the languages we are creating for each species will
have many characteristics in common, they should nevertheless be pairwise
disjoint; any language that claims to describe horses should contain no in-
stance of a human being, and vice versa. Moreover, the non-leaf languages
describing postulated ancestors should also in general be disjoint from pre-
sent-day species. That is, we must avoid the mistake of inferring ancestors
that simplysubsumall their descendants, or else we will not have captured
descriptions of change. Note, however, that we may choose to compare lan-
guages other than those of species. By generalizing languages to higher tax-
onomic levels, e.g. for eukaryotes versus prokaryotes, we would be distin-
guishing much more fundamental cellular machinery than we would by
generalizing only to the level of humans versus chimpanzees, or even verte-
brates versus invertebrates.

Finally, we would need a distance metd@cting over languages, or
grammars specifying those languages. With this, however, we can see some
potential difficulties should the languages in question be non-regular. For we
know that, given arbitrary CFLs or CSLg andL», it is in general undecid-
able whethet 1=L». How, then, can we establistdavhich we are assured
does not violate the identity axiom of (123b) wheneMgr;,L2)=0? Thus,
languages may not be so easy to compare. In fact, it is also undecidable
whetherL 1 andL , are pairwise disjoint, so we may not even be able to tell if
our languages or their ancestors are truly distinct.
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Thus, while the ideal of comparing abstract descriptions of genes or
genomes holds great appeal, there are serious practical and theoretical prob-
lems to be overcome. Nevertheless, there are many avenues to explore, such
as restricting the comparison to regular aspects of these languages, perhaps
by confining the area of interest to specific phenomena. This approach has
been used by [Overton and Pastor, 1991; Pastor, Koile and Overton, 1991],
who restrict their attention to instantiated parse trees describing major fea-
tures of genes and their regulatory regions in predicting the locations of those
features in novel genes. Another approach is to focus on simple lexical and
prelexical elements, following the methodology of the field of classical
linguistics where prototypic languages are inferred from changes in basic vo-
cabulary sets. Similar techniques have been used for biological sequences,
for instance, by [Brendel et al., 1986; Pietrokovski et al., 1990]. As for the
methodology of inducing grammars, a recent proposal would use logic gram-
mar “domain descriptions” of DNA regulatory regions as a starting point for
connectionist learning programs, which would in effect “tune” the general
grammar by modifying and refining it [Noordewier and Shavlik, personal
communication]. Others have used model-based learning to derive gram-
mar-like descriptions of signal peptides [Gascuel and Danchin, 1988], and
grammatical inference techniques to stlidycoli promoter sequences [Park
and Huntsberger, 1990] and 5'-splice sites in eukaryotic mMRNAs [Kudo et
al., 1987].

9 Conclusion

“Precisely constructed models for linguistic structure can play an
important role, both negative and positive, in the process of discovery
itself. By pushing a precise but inadequate formulation to an unac-
ceptable conclusion, we can often expose the exact nature of this inad-
equacy and, consequently, gain a deeper understanding of the linguis-
tic data. More positively, a formalized theory may automatically
provide solutions for many problems other than those for which it was
explicitly designed.” [Chomsky, 1957]

Treating genes and potentially entire genomes as languages holds great
appeal in part because it raises the possibility of producing concise general-
izations about the information contained in biological sequences and how it
is “packaged”. One hopes that grammars used for this purpose would com-
prise a model of some underlying physical objects and processes, and that
grammars may in fact serve as an appropriate tool for theory formation and
testing, in the linguistic tradition. This article has suggested a number of
ways in which this might occur, many of which are summarized below:
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Parse trees may reflect secondary structurk.is considered a
virtue of natural language grammars for their parse trees to capture
schematically some inherent structure of a sentence (see, for example
[Gazdar, 1985]). The reader is invited to draw parse trees from some
of the orthodox secondary structure grammars of section 2.4, and ob-
serve how remarkably their outlines conform to the actual physical
structures described. As we have noted, this extends also to alternative
secondary structures, modelled by ambiguous grammars.

Grammar nonterminals might model biochemical entitieBor ex-
ample, nonterminals representing DNA-binding proteins could
“rewrite” as the appropriate consensus binding sites, which would be
especially useful in cases where proteins or protein complexes bind
several sites and bring them into physical proximity as a result. Such
complexes, and indeed other “layered” protein-protein interactions as
well (e.g. the complement cascade in immunology [Watson et al.,
1987]), could also be modelled hierarchically by grammars.

Grammar rules could describe intra-molecular interactions'he
nonterminals in secondary structure grammars can be viewed as repre-
senting the hydrogen bonding between complementary bases. Gener-
alizing this, other forms of chemical interaction or dependencies be-
tween distant sites in a macromolecule could be modelled, as
suggested above for protein structure. Just as parse trees can depict
secondary structure, more complex structures might be specified quite
literally using grammar formalisms from the field of syntactic pattern
recognition in which terminals are actually two- or three-dimensional
subgraphs connected by derivation [Fu, 1982].

Greater-than-context-free grammars can model mutation and
evolution. As was seen in section 2.8.2, rules producing side-effects
on the input string can capture these processes, and the ability of such
grammars to take account of lexical elements (i.e. “contexts”) that
could control such processes is particularly attractiVeansforma-
tional grammar,subsequently developed by Chomsky to account for,
among other things, “movement” phenomena in natural language,
might also be useful in describing the allowable variations odeke
structure,or canonical syntax, of a gene (together, perhaps, with its
regulatory elements [Collado-Vides, 1989a,b]).

Grammar derivation could model gene expressiohhe notion of
successful derivation from a gene grammar being analogous to the ex-
pression of that gene in the cell was discussed at length in section 2.7.
In this model, nonterminals thus represent gene products and their
component parts, or, in the context of gene regulation, the aggregate of
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lexical and “environmental” elements required to accomplish expres-
sion at a given time and place.

Parsing might mimic certain biochemical processeSuch envi-
ronmental elements of gene expression are of course problematic, but
we have suggested elsewhere how parsing might yet be a suitable sim-
ulation tool for these control systems [Searls, 1988]. It is interesting to
note how recursive rules in a left-to right parser resemble the physical
action of certairprocessiveenzymes that travel along nucleic acid
molecules, even in some cases performing a kind of “backtracking”
error correction. The suitability of even more basic language-theoretic
operations for depicting biological processes like replication and
recombination was noted in section 2.5.

Besides the potential role of linguistic tools in modelling of biological
systems, we have also discussed at length the use of grammars for specifi-
cation (both of sequence elements and of algorithms), pattern-matching
search, and as abstractions that could lead to insights about the organization
of genetic information and its tractability to computational approaches. It
seems clear that the detection and analysis of genes and other features of the
genome could benefit from parser technology and a general awareness of the
linguistic properties of the domain. The notion of a comprehensive grammar
describing the genome or even individual genes in their full generality is
clearly quixotic, but the effort to approach this ideal may yet afford a better
understanding of what is surely a fundamentally linguistic domain.
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Note

* Abbreviations used: BNF: Backus-Naur form; CFL: context-free lan-
guage; CSL: context-sensitive language; CKY: Cocke-Kasami-Younger
(parsing algorithm); DCG: definite clause grammar; FSA: finite state au-
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tomaton; GSM: generalized sequential machine; IL: indexed language; L-
system: Lindenmayer system; PDA: pushdown automaton; RL: regular lan-
guage; SVG: string variable grammar.
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CHAPTER

3

Neural Networks, Adaptive
Optimization, and RNA Secondary
Structure Prediction

Evan W. Steeg

1 Introduction

The RNA secondary structure prediction proble2fRNA is a critical
one in molecular biology. Secondary structure can be determined directly by
x-ray diffraction, but this is difficult, slow, and expensive. Moreover, it is
currently impossible to crystallize most RNAs. Mathematical models for pre-
diction have therefore been developed and these have led to serial (and some
parallel) computer algorithms, but these too are expensive in terms of com-
putation time. The general solution has asymptotic running time exponential
in N (i.e., proportional thN), whereN is the length of the RNA sequence.
Serial approximation algorithms which employ heuristics and make strong
assumptions are significantly faster, on the ordexdér N4, but their pre-
dictive success rates are low — often less than 40 percent — and even these
algorithms can run for days when processing very long (thousands of bases)
RNA sequences. Neural network algorithms that perform a multiple con-
straint satisfaction search using a massively parallel network of simple pro-
cessors may provide accurate and very fast solutions.

This paper describes research into neural network algorithms for the pre-
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diction of RNA secondary structure from knowledge of the primary struc-

ture. Some background on both the computer science and molecular biology

aspects of the problem is provided, new methods are proposed, and the re-

sults of some simple, preliminary experiments are described [Steeg, 1989].
There are several goals motivating research into this area:

1. A fast and accurate algorithm for predicting RNA secondary structure is
sought. It is hoped that an approach that formalizes the problem explicitly
as an optimization problem and that incorporates a fine-grained paral-
lelism and the machine learning ability of neural networks will lead to a
good algorithm.

2. It is an interesting test of the ability of a neural net (and in particular the
MFT neural net) to learn some of the key parameters of a natural struc-
ture-to-structure mapping, in this case RNA primary structure to sec-
ondary structure. Fast learning and good generalization are among the im-
portant goals in the learning experiments.

3. Finally, the work described may be thought of as an early testing ground
for neural network and other parallel distributed processing (PDP) meth-
ods in molecular structure prediction — tA&RNAproblem is related to
the more difficult problems of the prediction of protein secondary and ter-
tiary structure.

1.2 Organization of the Chapter

In Section 2, the RNA secondary structure prediction problem is intro-
duced, and the necessary mathematical definitions and physical and chemical
terms are explained.

Section 3 defines the problem more formally in terms of a general class of
search problems. The most commonly used search algorithms are discussed,
and then a few of the most successful or important serial RNA secondary
structure prediction algorithms are described in this context. This provides a
brief historical summary of previous work within a unified formal frame-
work.

Our methods are described in Section 4. We discuss neural networks and
the particular class of Hopfield nets, Boltzmann Machines, and Mean Field
Theory (MFT) networks used in our research. We then define the mapping of
the2’RNAproblem onto the network, and explain the biochemical and physi-
cal assumptions implicit in our approach in terms of a simple graph theory
problem. Finally, reference is made to some previous wopkatein struc-
ture prediction with neural networks in order to illustrate the issue of repre-
sentation of constraints.

Section 5 describes the results of the experiments. There is an analysis of
the basic models employed in terms of speed of convergence, speed of learn-
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ing, generalization abilities, accuracy of structure prediction, stability of so-
lutions, and hardware/memory complexity.

Conclusions about the theory and experiments are offered in Section 6,
along with some proposals for future work.

2. Secondary Structure of RNA: Its Importance and
Methods of Determination

A molecule of RNA consists of a long chain of subunits, called ribonu-
cleotides. Each ribonucleotide contains one of four possible bases: adenine,
guanine, cytosine, or uracil (abbreviated as A,G,C,U respectively). It is this
sequence of bases, known as phienary structue of the RNA, that distin-
guishes one RNA from another.

Under normal physiological conditions, a ribonucleotide chain can bend
back upon itself, and the bases can hydrogen-bond with one another, such
that the molecule forms a coiled and looped structure. The pattern of hydro-
gen bonding is generally called thecondary structurewhile the conforma-
tion of the molecule in 3-dimensional space is calledtéhigary structure.

The base-to-base interactions that form the RNA secondary structure are pri-
marily of two kinds — hydrogen bonding between G and C and hydrogen
bonding between A and U, as was first described by Watson and Crick in
[1953]. (See Figure 1.) In fact, there is evidence of non-Watson-Crick base-
pairing in such nucleic acids as the tRNAs, but these are considered to derive
from the tertiary structure produced by large regions of secondary structure
containing Watson-Crick basepairing. For the sake of simplicity, such base-
pairing is mostly ignored in this paper.

Genetic information, the set of instructions that directs cell maintenance,
growth, differentiation, and proliferation, is encoded in DNA molecules.
RNA serves two biological purposes: It is the means by which information
flows from DNA into the production of proteins, the catalysts and building
blocks of cells; it also acts as a structural component of ribosomes and other
complexes. It is the secondary structure, and the resulting tertiary structure,
that determine how the RNA will interact and react with other cell compo-
nents.

Work on the determination of RNA secondary structure has been carried
out for decades by a number of research groups. The classical approach is di-
rect observation of a molecule’s secondary structure using X-ray crystallog-
raphy. More indirect methods involve specific cleavage of the RNA by en-
zymes called ribonucleases. Much research has gone into the promising
approach of computationglrediction of secondary structure from knowl-
edge of primary structure. The general method has been to search for
configurations of maximum base-pairing or of minimum free energy.

There are two basic problems encountered in the prediction approach.
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Figure 1: The figure is a 2-d representation of a tRNA molecule. The dots between
bases (letters) represent basepairing. The numbers represent the numbering of bases
in the sequence. (After [Sankoff et al. 1983]).

First is the need for accurate measures of the free energies of the various pos-
sible substructural components — of individual basepairs as well as stems,
loops, and bulges. Second, the space of possible secondary structures for a
given sequence is extremely large; a systematic search through all possible
configurations for a minimum-energy structure can be prohibitively slow
even on fast computers.

2.1 Structure and Free Energy—A Mathematical Model

We represedtan RNA molecule as a sequence S of symbs|sss . . . s,
wheres; is one of G,C,A, or U. A subsequence of S may be called a “se-
guence” where no confusion will occur. A sequence or subsequence may also
be called a “string”.

Given a sequence S, we represent the secondary structure of S by the
upper right triangular submatrix of arby-n matrix A. Aij is 1 if paired(, j),
i.e., (fori <j), if the bases at positions i and j in the sequence are paired, and
is 0 otherwise. (See Figure 3.) The secondary structure may then also be rep-
resented by a lig® of pairs, wherei(j) is in P if and only if paired(i, j). A
pairing itself will sometimes be referred toiag.
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The subsequence frogto s is written [, j]. A subsequence isroper
with respect to a secondary structure P if, for every paired element in the
subsequence, its partner is also in the subsequeneg.i$fa pair and <r <
j then we say ¢ j surrounds r Likewisei ¢ j surrounds re sif it surrounds
bothr ands. (The rule against knots dictates that givers, if i « j surrounds
eitherr or s, then it surrounds both.) Subsequengé i closed with respect
to a structurd® if (i, j) in P. A pairp ¢ gor an element in proper stringilj]
is accessiblén [i,j] if it is not surrounded by any pair inj] except possibly
i j.Itis accessible frore j if i andj are paired. Ayclecis a set consisting
of aclosing pair i * jand all pairg * gand unpaired elementsaccessible to
it.

We can distinguish two kinds of constraints on the forming of an RNA
secondary structurdrard and soft constraints ¢onstraintsand costsare the
terms often used in optimization work). Hard constraints dictate that certain
kinds of pairings cannot occur at all; soft constraints are those imposed by
thermodynamics upon the classes of possible structures. Hard constraints de-
termine which structures are “legal”; soft constraints determine which struc-
tures areptimal. The hard constraints are:

1. (Watson-Crick pairing): IP contains  j) thens andﬁ are either G and
C,orCand G, or A and U, or U and A. (This may be easily extended to
include the relatively rare GU pairings.)

2. There is no overlap of pairs.Rfcontains  j), then it cannot contain, )
if kzjor(k,J)if Kzi.

3. For alli, (i, i) cannot be irP.

4. Knots are not allowed: H <i <j <k, thenP cannot contain bothh( j)
and {, k).

5. No sharp loops are allowed:Rfcontains i j), theni andj are at least 4
bases apatrt.

The soft constraint on possible secondary structares S is simple:S
will assume the secondary struct&réhat hasminimum free energy

A secondary structur for S can be described in a natural and unique
way as composed of substructures of four kinds: loops, bulges, stacked pairs
(a stack of pairs is calledsien), and external single-stranded regions. The
cyclesof P are its loops, bulges, and stacked pairs. It is useful here to provide
some definitions of cycles.

1.If Pcontainsi*j, (i+ 1) ¢ (—1), ... { +h)e(—h), each of these pairs
(except the last) is said stackon the following pair. Two or more such
consecutive pairs is callecstacked pairgycle.

2. If P containsi ¢ j but none of the surrounded elemeintsl ...j — 1 are
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Figure 2: This figure illustrates the six basic kinds of RNA substructure. The indices
§ etc., represent base numbering, and the dots represent basepairing. (After [Sankoff
et al. 1983)).

paired, then the cycle istairpin loop (Many molecular biologists use
“hairpin” to refer to a stem with a loop of size 0 or 1 at the end, i.e., a stem
with virtually no loop. These structures are not allowed within our model,
and it is not certain that such structures odouvivo [Altona et al.,
1988].)

3.Ifi+1<p<qg<j-1andP containsi *j andp ¢ g but the elements be-
tweeni andp are unpaired and the elements betwgandj are unpaired,
then the two unpaired regions constitutérdarior loop.

4. If P containg ¢ j andi * j surrounds two or more paipse gr ¢ s,... which
do not surround each other, themaltiple loopis formed.

5. If P containg ¢ j and { + 1) «qg, and there are some unpaired elements be-
tweenq andj, (or, symmetrically, if° containsi « j andp * (j — 1) and
there are unpaired elements betwieandp), then these unpaired elements
form abulge

6. Letr be a sequence of elements in the sequenceés linpaired and there
is no pair inP surrounding, then we say is in asingle-stranded regian

In addition to these widely-accepted definitions of common substructure
types, there is the interesting phenomenops&udo-knot$Waterman and
Smith, 1978; Pleij, 1989]. Our current model makes no provision for the pre-
diction of such anomalous structures.
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The classical (Tinoco-Uhlenbeck) approach to specifying the free energy
E(P) of a secondary structure rests on the hypothesis that the free energy is a
sum of the free energy valuesRi$ cycles.

E(P) = 2 E(c)
Even if we accept as a working assumption the equation given above, we are

left with the task of specifying free energy values for the primitive substruc-
tures. For this we must turn to empirical biochemistry.

2.2 The Tinoco-Uhlenbeck Theory

Much progress has been made on the problem of assigning free energy
values to substructures. Although considerable theoretical work has been
done, the most useful free energy data have been extrapolated from experi-
ments on particular kinds of RNA. Much of the most important work has
been carried out by Tinoco and Uhlenbeck [Tinoco, Uhlenbeck and Levine,
1971; Tinoceet al, 1973].

A reasonable first attempt at solving Bi&kNAproblem would probably
incorporate a detailed physical model of molecular structure. A mathemati-
cian might define a ball and stick model (balls for nucleotides, sticks for
bonds) of an RNA molecule of length with 2N — 4 variable angles andli
— 1)(N - 2)/2 potential energy functions for all pairwise hydrogen bond inter-
actions. But the number of possible conformations is then an exponential
function of the degrees of freedom. Such a model would prove computation-
ally intractable for even the smallest RNA molecules.

Fortunately, Tinoco and others have simplified the problem, arguing that
only the existence or nonexistence of particular hydrogen bonds matters;
they have also provided empirical evidence that this simpler model has pre-
dictive power. Methods for relating free energy values to the size, shape, and
base composition of secondary substructures, sometimes known as the
“Tinoco Rules”, can be viewed as a means of abstracting away from much of
the complex thermodynamics of hydrogen bonding, Van der Waals forces,
rotation of covalent bonds, and steric hindrance.

The Tinoco free energy data may be found in [Tinoco, Uhlenbeck and
Levine, 1971; Tinocat al, 1973]. Summarized below are the most impor-
tant general ideas. It is important to qualify these ideas by noting that the
E(c) free energy estimates for cycles are only estimates. The values cannot
be determined with great accuracy, but they serve as useful, if sometimes
crude, approximations of physical reality.

The most stable secondary structures, those having the lowest free energy,
are long chains of stacked pairs. That is, a stem is the only kind of cycle
which contributes negative free energy to the structure. The particular free
energy value for a given stacked pair depends upon the two bases that are
bonding, as well as lacal contexti.e., the base composition of the closest
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stacked pairs to its upper right and/or lower left in the matrix. Loops and
bulges raise the free energy roughly in proportion to their size, that is, the
number of elements that are left unpaired between the two elements that are
paired. Beyond a certain size, loop and bulge energies seem to grow propor-
tionally to thelog of the unpaired length. Thus, a certain minimum number

of stacked pairs is required to support a loop or bulge interior to the stacked
pairs.

2.2.1 On The Minimal Free Energy Assumption Molecular biologists
commonly accept as an axiom that a full-length RNA molecule exists in its
lowest energy thermodynamic state. After transcription, the molecule
“breathes” in solution; that is, weak, non-covalent molecular interactions
(Van der Waals forces, hydrogen bonds, etc.) form, break, and reform. Final-
ly, the molecule settles into its lowest energy state — the secondary structure
which the neural net algorithms described herein attempt to predict.

There are certain exceptions and caveats to the above axiom. The sequen-
tial generation, during transcription, of an RNA molecule can trap it in a
local optimum. An example of this is attenuation, a regulatory mechanism
for some bacterial operons (summarized in [Stryer, 1981]). In other cases, an
RNA molecule will be forced into a particular configuration by its interaction
with other molecules, usually proteins. However, the minimum free energy
configuration provides a baseline with which the in vivo molecule can be
compared. Moreover, the techniques described herein are able to accommo-
date such phenomena; particular substructures can be “clamped” while the
rest of the representation of a molecule is folded using the free energy con-
straints. With these qualifications in mind, let us proceed with the description
of the theory and techniques used by others and in this project, while follow-
ing the classical simplifying assumption that minimal free energy is the de-
terminant of secondary structure.

2.3 Serial Algorithms

The development of serial algorithms for Zi&®&NAproblem starts with the
following equation. LeP be a secondary structure and suppose thgtig
proper. Consider the secondary structgjeon [i, j] induced byP. Pij con-
sists of all pairs fron® whose elements belong to j]. SupposeP'j; 1s any
other secondary structure dnj. If we substituteP5j for Pjj in P, then the
result is a valid secondary structure. That is,

P" = (P - Pyj) O Pjj
is a valid secondary structure. Then, from the above equation it follows that

E(P") = E(P) - ER) + E(P}j)
Therefore, ifP is optimal on 1, N] thenPij is optimal onf, j].

These facts serve as the mathematical basis for the serial algorithms for

RNA structure prediction, and they define a basic recursive scheme which
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most of the algorithms follow [Sankoét al, 1983]. The reason that the al-
gorithm in general is exponential is that every subsequence is broken into all
of its possible cycles and single-stranded regions, and each of these defines a
subsequence that must be analyzed and broken into its cycles, and so on. The
intolerable running times can be avoided by using dynamic programming in
order to compute the energy of each cycle only once, and by relying on
strong assumptions about the free energy function. (Mainly, the assumption
is that one need not calculate the energies of all subcycles in order to obtain
the free energy of a cycle; thus, the expensive recursion is avoided.) The de-
tails of these algorithms differ and will be explored in more depth below.

The other class of algorithms in use sacrifices claims of optimality in
order to obtain small polynomial running times. In these algorithms, the
basic idea is to collect a set of pairs of complementary subsequences (subse-
guences which could form chains of stacked pairs). This is a SID(N%)
operation. Then some heuristic is employed to combine these into possible
secondary structures and more heuristics are applied in order to choose
“good” secondary structures.

3. Search Algorithms

3.12°RNAas a Search Problem.

The development of the simplified Tinoco model of free energy in RNA
secondary structure has allowed researchers to work with a high-level de-
scriptive model that is independent of the low-level physics. In effect, the
focus upon mere existence or non-existence of hydrogen-bonded basepairing
reduces the problem to a discrete space that can be put into one-to-one corre-
spondence with a planar graph. Global energy minimization is implemented
as a discrete optimization problem. A discrete optimization problem can be
formulated as &earchproblem — a search through the space of possible
structures for the optimal structure.

Given the definitions of basepairing and secondary structures in RNA, it
is easy to see that an RNA sequence may have unimaginably many sec-
ondary structures. Even if restricted to the chemically possible structures, as
defined by the hard constraints given in Section Two, the number of sec-
ondary structures for a given RNA can be unmanageably high. To attempt to
find anoptimal secondary structure, then, is to perform a search for the one
(or few) “very good structures” among the multitude of “pretty good” and
“bad” ones. The problem then is to find ways to restrict the search space
and/or to speed up the search through parallelism or by using finely tuned
physical parameters to recognize quickly the thermodynamically best struc-
tures.

Looking at the2’RNAas a search problem will enable us to make clear



130 ARTIFICIAL INTELLIGENCE & M OLECULAR BloLOGY

and insightful comparisons of the many solution methods proposed. In this
section, the RNA secondary structure problem is formally defined in terms
standard to search problems in computer science.

3.1.1 Defining the Search Spacéet N, a natural number, be given.et
(as in “s” for “sequence”) be the set of RNA sequences of length N, that is,

$={G,C, A, uyN.

LetI (as in “p” for “pairs”) be the set of secondary structures for sequences
of length N, that is,

n={o, y\
Then if T (as in “Tinoco”) is a function that assigns free energy values to
secondary structures, our search space for the problem is, formally,

Given someT,
{(S, P, T (P)} whereS[E ,P Tl andT:% - []

(Where a particular sequen8és considered, and no confusion should result,
we will omit theSargument and usg(P).)
The problem then is:

Given a sequencel[X , construct a secondary structurélP such
thatT(P) < T(P") for all P' (T1

3.2 Classes of Search Algorithm

We discuss here some standard classes of search algorithms, because their
analysis sheds some light on the previous approaches to RNA structure pre-
diction as well as on our new methods.

3.2.1 Optimal Algorithms and Exhaustive Searchln terms of the
search space formulation given earlier, what does an exhaustive search algo-
rithm do? Clearly, it consideevery pointP in the space of valid secondary
structures for sequen& For each such point, it calculates the free energy
T(P). It then chooses tHewith the lowesfT value, and outputB.

A simple recurrence relation defining the exhaustive search may be de-
rived by considering the assumptions and definitions from Section 2:

The assumption about the additivity of free energy among cycles:

E(P) =2 E(q)
Substitutivity of structures:
If Pis optimal on 1, N] then Pij is optimal onf, j], if [i, j] is proper.
Taking these and performing some algebra, one may derive the following

rule. The free energy value for the optimal secondary structure gnig
given by

TG,j) = min{O, C(,j). ‘r<nhin[T(i,h) +T(h+i, j)]}
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whereC(i, j) = ming=1 min[E(S) +Z (ap,b C(ap,bp)], c representing
k—cycles fromi to j, is the optimal energy for,||] if we close it (i.e., ifi and
j are paired). Ifi} j] is notclosable that is, if {, j) is not a Watson-Crick pair
or if j — i < 4, thenC(i, j) is taken to be infinity.

This analysis is due to Sankeaff al, and further details may be found in
[Sankoffet al, 1983]).

A search algorithm simplistically defined in terms of such a recurrence re-
lation is inherently inefficient. The algorithm recursively recomputes the
same answer — thEvalue — for each subsequence many tirbssmamic
programmingmethods work by filling in a table of subproblem values for
subsequent repeated lookup, and offer dramatic time savings for problems
which are composed of only a polynomial number of subproblems. However,
the complexity concerns for ttl22RNAproblem do not derive solely from
the choice of full recursion versus dynamic programming. The complexity in
the general algorithm stems from the number of possible cycles that have to
be considered for each substring if multiple loops of arbitrarily high order are
allowed. That is, the number of subproblems is exponential in the size of N.
This fundamental complexity is not decreased if the algorithm looks up the
energy for each possible cycle in a table instead of visiting each cycle sub-
string recursively.

3.2.2 Approximation and Heuristic Algorithms. An exhaustive search
for the best secondary structure is not feasible. Some restrictive assumptions
have to be made, and some potential structures ruled out of consideration.
Exactly which assumptions to make, and which classes of structures to ig-
nore is a deep and difficult problem. Some heuristic choices have to be made,
and in the end one has to settle for an approximation algorithm, an algorithm
which is believed to “often” provide a “good” solution, if not always the op-
timal one.

3.2.3 Restrictions on the Search Spacé [Sankoffet al, 1983], the
basic exhaustive search algorithm is shown to have time complexagrof
(rN)=™), wherer is the proportion of unpaired bases in the sequence (often
taken to be around 3/4), ands a number providing a proportional limit on
the ordeik of a loop within somei[j] (for example, it is found that usuaky
< (j— )7, soc = 1/7). The simplest way to modify the exhaustive search al-
gorithm described above in order to make it efficient is to restrict the number
and kind of secondary structures to be considered, and the complexity of en-
ergy functions, while employing the same basic algorithmic structure.

Two obvious and useful restrictions to make are

1. to ignore multiple loops with ord&r> kg for some smalkg, and/or

2. to weaken the requirement that the algorithm work for arbitrary func-
tionsT(s) for any cycles.

Before reviewing previous work o2’RNAalgorithms, it is instruc-
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tive to consider a few more general search methods.

3.2.4 Local SearchA large and interesting class of algorithms is the
class of local search algorithms. A local search algorithm has this basic form:
Assume we have a measu) of the “goodness” of a solution (Good-
ness may be defined analytically or in terms of heuristic and subjective crite-
ria.)

1. Start with a random solution (or some easily-obtained solution).

2. Apply to the current solution some transformatigfrom a given set of
transformations. The resulting solution becomes the new current solution.

3. Repeat until no transformation in the set improves the current solution.

The resulting solution may or may not be globally optimal. Of course, if
the set of transformations includes every transformation that can take one so-
lution into another, then we have essentially the exhaustive search method —
and its high computational expense. The point of local search algorithms is
to use a set of transformations that can be considered (hence the set should
be small) and applied (so they must be efficient) in a small amount of time
and space. If the set is small and the transformations easy, then the solutions
that can be transformed one to another are considered “near”, and hence the
transformations are “local”. The result of a local searchlaally optimal
solution, also called simply lacal optimum The best solution overall is the
(or a)global optimumOne can hope, if the transformation set is a good one,
that the local optima found are at least very close to the global optimum (op-
tima).

A Hopfield network, as discussed below, is a highly parallel neural net
method of local search. The Boltzmann Machine and MFT networks repre-
sent (stochastic and deterministic, respectively) ways to change this into a
moreglobal search method.

3.2.5 Greedy Algorithms.The local search algorithms build whole solu-
tions and then transform them repeatedly. A large number of heuristic algo-
rithms build solutions incrementally. The greedy algorithms are in this class.

In a greedy algorithm, at any stage in the building of a solution it is the lo-
cally optimal step that is chosen. For example, a greedy Traveling Salesman
algorithm would, having computed a path fr@y throughCy, choose for
the next section the city which is closesg though that choice might re-
sult in a suboptimal final path. A simplistic greedy algorithm ZGRNA
might calculate a structure for an ever larger segment of the RNA sequence.
At stepk it would have a secondary structure fbor k — 1 and would grow
the solution by finding the best way to force kil base onto the current
structure. In general, this would generate a rather poor solution; however,
Martinez [1984] has a biological justification for a particular greedy ap-
proach, and his method achieves good results on some RNA sequences.
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3.2.6 Monte Carlo Methods, Simulated Annealing:Simulated anneal-
ing” is a method, adapted from statistical mechanics and inspired by anneal-
ing procedures in metallurgical processing, of employing stochastic functions
in search procedures. Derived from theoretical work in [Metromtlial,
1953] and popularized in [Kirkpatrick, Gelatt and Vecchi, 1983] as an opti-
mization technique, simulated annealing is one example of a “Monte Carlo”
method of probabilistic numerical simulation.
The simulated annealing procedure is a way of doing a local search with-
out becoming stuck in “bad” local minima. The method is simple:
1. Define a set of local transformatidns(as in any local search) on the so-
lution space.
2. Define a stochastic functigh from solutions (states) aiedmperatureval-
ues [ = 0) to transformations, such that
» The probabilityr5(x, T) of picking transformatior; for some constant
temperaturel, when the current solution is x, varies directly with its
“goodness” as a move, i.e.
If g(Lj(x)) > g(Lj(x)) thenmg(x, T)> ni(x, T).
» The degree to which the probability of a move depends on its goodness is
higher asT is lowered. In other wordg, is a measure of thmndomness
in the move-generation procesB.is the move-generation function,
which employs the probabilities.
3. Choose ¢emperature T, B 0.
4. Repeat whild > O:
(a) Choose a transformation and transform the current solution
X:= P(x, T)(X)
(b) If acceptable(x) then quit.
(c)Decrement
As Kirkpatrick, Gelatt and Vecchi [1983] have pointed out, the simulated
annealing technique is a type of adaptive divide-and-conquer, with the basic
features of a solution appearing at high temperatures, leaving the specific de-
tails to be determined at lower temperatures. There is a very natural way to
map simulated annealing onto neural nets, and this, the Boltzmann Machine,
is discussed in Section 4.4

3.3 Previous Work on2°RNA

Historically, the systematic investigation into prediction of nucleic acid
secondary structure has been marked by three major phases, each represented
by a particular approach that dominated: 1) heuristic search over the sec-
ondary structure matrix or a large space of possible stacking regions, 2) dy-
namic programming approaches to building an optimal structure in a few
passes, and 3) incorporation of auxiliary information and kinetic or evolu-
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tionary assumptions into folding rules.

Pipas and McMahon [1975] designed an algorithm that performs a search
in three passes. The first pass constructs a list of all possible stems of a cer-
tain size. The second pass scans this list for stacking regions thatrgrat-
ible (meaning they form no knots and share no bases in common). In the
final pass the algorithm performs an exhaustive search for the set of compati-
ble stacking regions with the lowest free energy (using the Tinoco rules
[Tinoco, Uhlenbeck and Levine, 1971]).

In terms of search spaces, this algorithm can be viewed as using two pass-
es to construct a subsetldf— the subset consisting of those structures con-
taining stacking regions of at least a certain size. The third pass then searches
M exhaustively for th& which minimizesT(P) for some givert.

The Studnicka algorithm [Studnicla al, 1978], like Pipas and McMa-
hon's, begins by constructing a list of all the possible stacking regions. In the
second stage, the algorithm enforces compatibility constraints between sets
of regions. Instead of ignoring conflicting regions, as the Pipas-McMahon al-
gorithm does, the Studnicka algorithm pares down the regions until compati-
bility is achieved for the now-smaller regions. The next pass combines the
regions into large structures of ordex 2 (i.e., multiple loops not allowed).

A final stage permits the user to combine these large structures into sec-
ondary structures of arbitrary complexity.

Such an algorithm can examine structures of high dedtre number of
loops in a multiple loop) without the exponential time complexity seen in the
general recursive algorithm. This is because the set of high-order structures
that the algorithm can construct is severely restricted by the initial constraint
of building structures with a set of existing stacking structures. For example,
if building a structure from stem, on [, j], andB, on [p, q], one already
rules out all combinations of structures over subsequengcglswWherei < r
<j,ori<s<j,orp<r<q,orp<s<ag An exponential explosion of pos-
sible structures is excised from the search spaméri.

Nussinov’s group [Nussinogt al, 1978; Nussinov and Jacobson, 1980]
was among the first to apply dynamic programming to2fliNAproblem.

The Nussinov algorithms build an optimal secondary structure (subject to
certain restrictive assumptions) in one pass. The algorithms are similar in
structure to a basic dynamic programming version of the general recursive
search algorithm [Sankoféft al, 1983], except that Nussinov made simplify-

ing assumptions about structure and energy. The first version [Nusginov
al., 1978] ignores the destabilizing effects of loops, and simply attempts to
maximize basepairing. The second version imposes a simple linear penalty
on loop size.

All of the above display either unrealistic assumptions about the free ener-
gy of substructures, and/or have high time comple@@xl?) for Studnicka)
or space complexity.
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3.3.1 Recent Advances with Dynamic Programmingith the interest-
ing exceptions of the Martinez work and Majet, al [1991], the current
“state of the art” in serié2’RNAalgorithms is a set of recent dynamic pro-
gramming approaches.

Sankoff, Kruskal, Mainville, and Cedergren [Sankeffal, 1983] have
described algorithms that restrict the order of multiple loogss@. In the
case of arbitrary energy functions for loops, they report running times of
O(N4). When the energy function for loops is restricted to the linear case, the
result is anO(N3) algorithm. Zuker [Zuker and Stiegler, 1981], and Water-
man and Smith [1978] have proposed similar algorithms within this range of
time complexity.

In a theoretical computer science paper [1988], Eppstein, Galil, and Gian-
carlo describe an algorithm with running timd\@l@gzN) for thek < 2 case
where the energy function for loops is assumed to be convex function of the
number of exposed bases (bases accessible from the loop’s closing pair).
(See [Eppstein, Galil and Giancarlo, 1988] for the definitions of convex and
concave.)

Several of the dynamic programming algorithms can be parallelized quite
effectively, typically by using a wavefront method to tr&{®) processors
for anO(N) factor in running time.

3.3.2 Martinez. Martinez [1984; 1988] takes a very different approach to
minimizing free energy of molecules. Instead of building a structure using
purely combinatorial methods, Hineticsbased method simulates the fold-
ing as it might actually occur in the molecule.

The Martinez folding rule, which defines the order in which parts of the
final secondary structure are built in his algorithm, is simple:

Of all the remaining unformed stems which are compatible with those
constituting the current structure, choose the one with the largest equilibrium
constant (of association). This structure is the one whose formation is the
most thermodynamically favored chemical reaction.

In search method terms, Martinez’s method is a form of greedy algorithm.
In particular, it has the property that it removjeei;)? points from the search
space of possible remaining structures at each step, whene the begin-
ning and end indices of the subsequence which supports the chosen stem.
The time complexity of this algorithm is or@(Nz).

The Martinez method is very promising. It has been shown to work on
some medium-length (200-500 bases) sequences. The method is based on a
fairly speculative but interesting evolutionary assumption, and is expected to
be most successful in predicting the structures of RNAs whose secondary
structure is essential to function (e.g., tRNAs and rRNAS).

3.4 The MFT Network Search for Optimal RNA Structures
In terms of the search model discussed above, our neural network method



136 ARTIFICIAL INTELLIGENCE & M OLECULAR BloLOGY

may be described as a highly parallel distributed search, wherein each possi-
ble RNA secondary structure representation is distributed over many “pro-
cessing units” (one unit for each possible base-pairing) and wherein several
potential secondary structures for the input sequence are represented simulta-
neously.Conflict (w.r.t. constraint violation) between possible substructures

is implemented by inhibitory connections between units in the respective
substructures, arglipport(stem compatibility) is implemented by excitatory
constraints.

Points in the2’RNAsearch space are considered many at a time, as they
competaduring the MFT network relaxation process. The MFT relaxation al-
gorithm is intended to avoid bad locally-optimal points in the space in favor
of more globally-optimal solutions. The MFT learning algorithm is intended
to make this search easier by refining the parameters of this competition over
many trials with a training set of sequence and structure data. Connection
weights constrain the dynamics of network relaxation, and can be seen as an
implicit representation oknowledge poth analytic and heuristic, that aids
the search process by pushing the network state transition process in particu-
lar directions and towards particular solutions in the solution space (

{T(PY).

4 Methods

This section describes our methods, and in particular it defines the neural
network model of RNA secondary structure used in the experiments. The
model is an example and an extension of the Mean Field Theory (MFT) ma-
chine originally proposed by Hopfield and Tank [1985] and later described
and used by Peterson and Anderson [1987], among others. The MFT ma-
chine is a deterministic approximation of a Boltzmann Machine, which is a
stochastic variant of a Hopfield net. The representation used is one wherein
an RNA secondary structure matrix is mapped directly onto a Hopfield net,
with every unit representing a basepairing.

In the first subsection, neural networks are introduced and some reasons
behind the choice of neural networks, and specifically one-layer nets, are of-
fered. Next, the MFT network and its intellectual roots (Boltzmann Machine
and Hopfield network) are introduced. Then we define our mapping of the
2°RNAproblem onto a Hopfield net architecture. Finally, some issues in the
modelling of molecular structure are discussed with reference to our work as
well as other work on neural networks and molecular structure prediction.

4.1 Neural Networks

Artificial neural networks are models of highly parallel and adaptive com-
putation, based very loosely on current theories of brain structure and activi-
ty. There are many different neural net architectures and algorithms, but the
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basic algorithm which all artificial neural nets share is the same. Assume a
collection of simple processors (“units”) and a high degree of connectivity,
each connection havingweightassociated with it. Each unit computes a
weighted sum of its inputs (then may plug this sum into some nonlinear
function), assumes a new level of activation, and sends an output signal to
the units to which it is connected. In many of the models, the network settles
into a stable global state under the influence of external input that represents
an interpretation of the input or a function computed on the input. This set-
tling process, called relaxation, performs a parallel search.

4.1.1 Neural Network Applications.Besides being the focus oénnec-
tionistresearch into models of brain function and cognition, neural networks
have been applied with some success to optimization problems and function
approximation. Optimization problems attacked with neural nets include the
Traveling Salesman problem (TSP) and graph partitioning [Peterson and
Soderberg, 1989], and process scheduling [Hellstrom and Kanal, 1990].

The 2’RNAproblem possesses several important features of the kind of
problem at which neural network methods excel:

» Complexity: The problem has a large space of variables (search space).

* Redundancy: The set of reasonable, though not necessarily optimal, solu-
tions is large, and many roughly equivalent solutions have variable values
in common.

» Parallelism: Neural nets, of course, bring a parallel approach to any prob-
lem. Some problems seem inherently parallel (e.g., low-level vision), and
the simultaneous consideration of and competition between possible solu-
tions might well be the correct paradigm for the molecular folding predic-
tion problems.

* Noise-tolerance: The problem may require the processing of very noisy or
incomplete input data, and one would still like a reasonable answer.

In addition to these general neural net advantages, there are reasons for fa-
voring the particular architectures chosen in this project. The stochastic na-
ture of the simulated annealing procedure of the Boltzmann Machine might
model well the thermodynamics of free energy minimization of an RNA
molecule. The relationships among statistical mechanical models of spin
glasses, neural networks, and biological macromolecules is an active re-
search area [Stein, 1985; Anderson, 1988].

4.2 Architectures
A particular neural network architecture may be defined by specifying the

following (list taken from [McClelland, Rumelhart and the PDP research
group, 1986)):
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A set of processing units

» A set of activation states for the units
» An output function for each unit

A pattern of connectivity among units

» A propagation rule for propagating patterns of activity through the net-
work

» An activation rule for combining a unit's inputs with its activation level to
produce a new activation level

« A learning rule whereby patterns of connectivity are modified by experi-

ence

In most neural net models of computation, the processing of an input vec-
tor, i.e., the solving of a particular instance of a problem, occurs through the
network relaxation process. This is the process wherein the units in the net-
work change their individual states in accordance with an update rule in
order to maximize some global measure of “harmony” or minimize “energy”
or constraint-violation.

4.3 Learning in Neural Networks

In most neural net models of computation, the processing of an input vec-
tor, i.e., the solving of a particular instance of a problem, occurs through the
network relaxation process. The information needed for a neural net to solve
a problem is largely stored in the connection weights between units. The pro-
cess whereby the weights are modified in order to improve network perfor-
mance is called, appropriately enoulgarningor training.

There are several kinds of network learning procedures, but most fall into
one of two broad classes: thapervisedand theunsupervisedearning pro-
cedures. The research described in this report concerns only supervised
learning procedures.

In supervised learning, the connection weights between units are modified
in order to reduce some measure of error — the error being a weighted differ-
ence between what the network outputs in response to a particular input and
what one desires the network to produce in response to that input. Just as the
relaxation process may be seen as a search through the space of possible net-
work activation states for the state(s) with the lowest energy (lowest error,
highest harmony, etc.), the learning process is the search through the weight
space of the network for the set of connection weights that minimizes error in
processing the training inputs. However, one desires that the learning proce-
dure demonstrate some degreegeheralization.That is, the weight
modifications should enhance performance on whole classes of possible inputs
represented by the trial patterns — not just on the trial patterns themselves.



Steec 139

The focus of this report is 0’ RNA which is essentially a large opti-
mization problem; but we require the networks also to learn a function, a
mapping between RNA sequences and secondary structures, by successively
refining estimates of a few network variables in order to reduce predictive
error.

4.4 Hopfield Nets, Boltzmann Machines, and MFT Networks

Hopfield [1982] formalized the idea of a massively parallel and highly in-
terconnected network performing a constraint satisfaction search. He intro-
duced a cost function, termeshergy which is a measure of system-wide
constraint violation. He then showed that the connection weights in a net-
work encode locally minimum energy states, and that, using a suitable
activation updating rule, these minimum energy states are exactly the stable
states of the network. In particular, a umits contribution to the network’s
energy can be computed locally:

AEy = E(a,=0)~ E(a =1) = (2 a wki)-
whereg; is the activation level of thigh unit, andw;; is the connection
weight between thigh andjth units. The unit turns/remains on/off depending
on which state lowers the network’s energy.

Since the absolute value of the energy is bounded by the weights, the
search is guaranteed to converge, if asynchronous node updating is used.
However, like other gradient search methods, the procedure may only find a
locally optimal solution. (This was not especially problematic in Hopfield's
early work, because the networks were intended as a model for content-ad-
dressable memory. The “memorized” states were exactly the locally mini-
mum states, and all the network was required to do wasrpleteone of
the stored states, i.e., to fall into a local minimum.)

In order to design Hopfield-like nets that can escape local minima, re-
searchers have adopted simulated annealingechnique, and thereby de-
veloped the Boltzmann Machine (BM) [Acklegt al 1985] . In a BM, the
following stochastic updating rule (or a variant thereof) is used:

Each unit sets its activation state to 1, regardless of previous state, with
probability
P = 1/(1 +e2E/T)

whereT, calledtemperatureis a measure of randomness in the system. At
higher temperatures, high randomness permits state changes to be relatively
independent of the energy, thus allowing the system to escape from local
minima. At lower temperatures, configurations with low energy are more
heavily favored. Thus, by using an annealing schedule whereby the tempera-
ture is gradually lowered or alternately raised and lowered, it is possible to
avoid certain local minima and to find more globally optimal solutions. Actu-
al performance in practice depends greatly on the topology of the energy sur-
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face for the particular problem and encoding.

An alternative method for avoiding local minima and generally speeding
up the search for some problems is to cmatinuous activationmodels. In
[1985] Hopfield and Tank introduced a model in which activation levels (and
hence outputs) take values from a fixed interval (in this case [0,1]) instead of
the set {0, 1}. Such networks are based dvemn Field Theorgapproxima-
tion to Boltzmann Machines and are thus caliel machineor MFT net-
works The MFT algorithm replaces the stochastic state transitions of the BM
with a set of deterministic equations. The solutions to these equations, for
each given temperature, represavdragevalues of the corresponding quan-
tities (correlations or co-occurrences between states of all units) computed
from extensive and time-consuming sampling in the BM. The continuous
output has the effect of smoothing the energy surface. In the binary model,
the search procedure can be viewed as moving along the edgeMedian
mensional hypercube (whek&is the number of units); whereas, in the con-
tinuous model, the search can move smoathitliin the hypercube. In terms
of an energy surface, a Boltzmann Machine performs stochastic hillclimbing
(or hill-descending); MFT recasts it into deterministic motion through a
smoother landscape. “Rather than scaling hills, one takes them away” [Peter-
son and Anderson, 1987]. Like the binary model, the continuous model is not
guaranteed to find globally optimal configurations. Nevertheless, simulations
of such a net which encoded the Travelling Salesman Problem did produce
reasonably good solutions in a short period of time. In contrast, solutions
found using the binary model proved to be only slightly better than random
[Hopfield and Tank, 1985]. Peterson and Anderson [1987] have extended this
approach and have tested the algorithm on several important optimization
and learning problems, with favorable results.

The details of the derivation of the MFT model from the Boltzmann Ma-
chine model may be found in [Peterson and Anderson, 1987]. It turns out
that the update rule for each of the continuously-valued units in a network is

w. V.
V= tanhQZLQ
T

and the iterative algorithm becomes
W--V-Old D
v = oy
1 H

The above equations define the MFT relaxation scheme. The learning
algorithm is equally straightforward/; is really an estimate ofa, the
time average taken for the state of upitWhat is needed for learning is the
equivalent,V;;, of the correlations &a;> between connected units sampled
in the Boltzmann Machine learning ggorithm:
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Vv, = %%anh ﬁzw"frv‘km+ tanh %Z W‘fl_vjk%

which reduces under certain conditions to
Vij = ViVj
Let ijr be theVj; value for unitsy; andu; in a relaxation run wherein the
input units are activated by an input vectgy and the output units are
“clamped” (forcibly set and maintained) to represent veggg and IetVi'j
be theVij value when the machine runs with no clamping of the output units
in response to the inpuj,. Then the weight update (learning) rule is the fol-
lowing.

If V{E > Vjj then incrementy;j.
If ViJj’ <Vjj then decrement.

The increment must be proportional\l+ —Vi'j and theVj; quantities are
usually averaged across cases (learning samples).

4.5 Defining an MFT Machine Model 0f2’RNA

4.5.1 The Underlying Architecture: A Hopfield Net The Hopfield net
was chosen primarily because there is a very natural mapping 2TRhA
problem onto this architecture. Basically, the network is a direct representa-
tion of an RNA secondary structure matrix. Each matrix position is repre-
sented by a single unit. An activation value of 1 means that the correspond-
ing matrix element has a 1, and hence an hypothesis that the corresponding
two bases in the RNA sequence are paired; a 0 in the same unit represents an
hypothesis that the bases are not paired. A value between 0 and 1, if analog
values are used, stands for a relative probability of the two bases being
paired.

Symmetric connections are chosen because there must be signals (in-
hibitory or excitatory) between units and there are no privileged units — all
the matrix positions are, priori, equally valid, although particular combina-
tions of them are invalid.

4.5.2 Representing the Problem: Deriving the Energy FunctiorRecall
the Hopfield result [1982] that the equations of motion for a symmetrically
connected network lead to convergence to a stable state. A stable state is one
in which the outputs of all units remain constant. Under certain conditions
(asynchronous node update according to the local updating rule), the net-
work’s stable states are the local minima of the quantity
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whereE is a measure ofnergy (This term is not to be confused with the
free energy of an RNA molecule; we will attempt to make it clear which use
is intended in each situatiorlV) is the number of units; is the activation
level of theith unit, andw;; is the connection weight between unigndj. I

is a level of external input to the systentiasfor each unit.

In mapping th°’RNAproblem onto a Hopfield net, the network must be
described by an energy function in which the lowest state corresponds to a
legal and optimal RNA secondary structure. Low energy in the network must
correspond to low free energy in the simulated RNA molecule.

Assume that the network h&= N(N-1)/2 units (whereN is the length
of the RNA molecule), so that, intuitively, the network represents the upper
right triangular submatrix of the RNA secondary structure matrix. (See Fig-
ure 3.) Assume that each unit receives input telling it the composition of the
two bases whose possible pairing it represents (e.g., it receives a constant
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Figure 3: Mapping the problem onto a neural network: The diagram on the left rep-
resents a tRNA secondary structure. On the right is its representation on a secondary
structure matrix, where each cell corresponds to a possible base pairing. The large
diagonal in the upper right of the matrix represents the main stem; the other diago-
nals represent the smaller, subordinate stems.
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signal of 00 01 for (G,C), etc.).
First, we want a term in the energy definition which tells us that the opti-
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mal states are ones which enforce the hard constraints on RNA secondary
structure. There should be only one unit active in any row, only one active in
any column, and there should be no knotting. Consider the local minima of
the following quantity:

(all summations are from 1 8 except where indicated), wheReranges

over rows of the networlC over columns, andandj count up to the length

of the respective row or column.

Note that the first term is O iff each rdRwcontains only one or fewer ac-
tive units; the second term is O iff each coluBnontains only one or fewer
active units; and the third term is 0 iff there are no knots. Therefore if a net-
work incorporates this energy function, the stable states of the network favor
representations of legal RNA secondary structures.

There remains the task of representing constraints on optimal secondary
structures. Basically, what is wanted is this: Favor the formation of stacked
pairs, with the precise negative energy contribution given by the Tinoco local
context value for two adjacent stacked pairs. Impose a penalty for large loops
and bulges, the penalty growing with the size. (In the experiments per-
formed, the local context values were not represented, and their omission did
not prevent good performance on the small tRNA sequences. However, it is
expected that accurate predictions for longer molecules will require local
context values.)

Add to the equation fdg, the global network energy, the following terms:

N N C-RN-y

ui2y % % 5 (RC,R=2C-Yy)agap., c,
R C

770 y=0

and

33 o

wherefy(i, j, k, I) is some function of the distance between two umitg (

and k, ), andfy(i, j) is a function of the indices of a unit which returns some
value representing the tendency of a basepair to form. (For example, a high
value is returned for indices representinG a C pair, and low or zero value
returned for & « U pair.)
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Figure 4: The structure of the basic network used for RNA secondary structure pre-
diction. W is the inhibitory signal between elements of a row;i¥\the inhibitory
signal between elements of a columny i/the inhibitory signal that prevents knot-
ting; Wy is the excitatory signal between elements of possible secondary structures.

Setting the Connection Weights and Node Weight3.hrough the ener-
gy function definitions above and the earlier definition of energy minima for
Hopfield nets, a set of connection weights is implicitly defined. The first
three terms define inhibitory connections, with weighf3,y respectively,
between elements in the same rows or columns or elements whose conjunc-
tions form knots. The fourth term defines excitatory connections, with weight
M, between elements diagonal (in the “good” direction, i.e., not the knot di-
rection) to each other. The fifth term defines the node weights, the bias for
each unit. The bias of a unit influences the tendency of a unit to be active, ir-
respective of the influence of other units acting on it via connection weights.
The bias is used in this model to represent the basic probability of a particu-
lar basepairing, independent of constraints imposed by other possible pair-
ings. (Figure 4 illustrates the connection structure of the basic network.)

It is important to understand the limitations of this representation and how
this relates to heuristic knowledge and to machine learning. The global pa-
rameters,f,y, 4 (and through these, the connection weighi$, fy, andfy
must embody a combination of information about both the problem and pa-
rameters particular to the computational architecture. Analysis of the prob-
lem and of Hopfield networks has led to this mapping of problem to architec-
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ture, but it is not currently possible to derive analytically, from biochemical
knowledge, precise optimal values for the global parameters. It is therefore
necessary to make educated guesses at initial values (i.e., employ heuristic
knowledge) and to adapt the weights over several learning trials in order to
improve the representation and improve performance. It may be that adaptive
networks also learn so well that they, in addition to improving their ability to
represent existing biochemical knowledge, actually derive unknown or refine
known physical parameters of the RNA folding process.

Input, Output, and Hidden Units. The structure of the network as
defined for this project differs somewhat from most other Hopfield or Boltz-
mann applications. There are no separate input or output units, and no hidden
units. The input sequence (binary representations of the bases G, C, A, U,
and perhaps modified bases) is read into the rows and columns so that each
unit receives input representing the identities of the two bases whose possi-
ble pair the unit represents — one represented by the row index and one by
the column index. The bias terj for each unituy is then set accordingly.

The connection weights are already determined and remain fixed during the
processing of the particular sequence.

The output of the network is the set of activation levels of all the units,
measured in analog (as numbers between 0 and 1) or binary, and preferably
represented in a format like the RNA secondary structure matrix.

There are no hidden units in the models used thus far, although there are
models under consideration which may use hidden units to represent the
more complex higher-order relationships between distant substructures that
will probably be needed for accurate prediction of very long RNA sequences.

4.6 Learning the Connection Weights and Learning RNA Structure

In this project, an effort was made to take as much advantage as possible of
regularities in the problem (in the search space) in order to define an archi-
tecture wherein fast and useful learning is possible. If most work on predict-
ing protein secondary structure [Qian and Sejnowski, 1988] seems to assume
that all the important information in the sequence-to-structure mapping is
local, the work described here assumes only that such information is either
local or uniformacross the net.

In particular, we hypothesize that there are a few (fewer than ten) impor-
tant parameters, potentially obtainable through learning from examples, that
determine the global sequence-to-structure mapping for RNA. Our current
model employsx, B, vy, L. These few quantities, once learned, can then be
combined and replicated in some recursively specifiable way across the net
in order to construct connection weights. The problem, then, is to define
these few parameters as variables defining a learning space, and to devise a
simple way to construct connection weights from these variables. Then the
learning procedure would, instead of incrementing or decrementing each in-
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dividual weightw;; on each pass through the net, only update the corre-
sponding global learning variable. After learning, the weights would then be
constructed from the variables and used in the relaxation search. This is in
fact what was done in this project, and the details are given below.

Such a learning scheme is beneficial in three ways. First, it probably pro-
vides for more accurate and robust learning, as it tends to ensure that key
global parameters — and not just positional correspondences found in the
learning samples — are what is learned. Second, the very small variable
space (less than 10 instead@(ﬂ\l“) or O(N2)) that is optimized during
learning makes for huge decreases in learning time. Third, and perhaps most
interesting, it probably allows for some degree of scale-invariant learning.
That is, it should be possible to achieve useful learning and structure predic-
tion on a set of RNA sequences of different sizes, since the indices of partic-
ular units and connections do not have to match up exactly. Such scale-in-
variance over a very small range of sequence lengths is demonstrated in the
experiments described below. In sum, the parameterization is a regularization
scheme.

4.6.1 The Learning Variables and Learning ProcedureFollowing the
derivation of the energy function given above in the introduction to the
Hopfield net representation @ RNA one sees the obvious candidates for
global learning variables. Corresponding todh@, y, andu are Rowlnhibi-
tion, Columninhibition, KnotInhibition, DiagonalExcitation.

The MFT learning algorithm, modified for our global learning method,
becomes (for a network of M units):

for each training iteration k
for each learning example sequesce
Phasé (s)
Phase(s)
fori=1toM
forj=i+1toM
8:=n((ViVj)* - (V)"
if (u;; u; are in the same row) then
Rowlnhibition := RowInhibition -
else if 4, u; are in the same column) then
Columnlnhibition := Columninhibition &
else if {4, u; form a knot) then
Knotlnhibition := KnotlInhibition -6
otherwise
DiagonalExcitation = DiagonalExcitationo-
endfor; endfor; endfor; endfor

n is thelearning rate parameterPhasé(s) normally means to run the net-
work relaxation process on inpgitvith the output clamped (this provides the
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Figure 5: Graph theoretical interpretation of RNA secondary structure. On the left is
a linear representation of the RNA sequence 1-n with a knot involving i,j,k and I. In
the center is a circle graph (Referred to @sn the text) derived from the linear se-
guence. On the right is an edge adjacency graph (G' in the text) derived from the cir-
cle graph.

teaching input, the supervision in supervised learnifbasé(s) means run
the network relaxation on input sequeseeith the output unclamped. Simi-
larly, the +,— superscripts refer to the correlations gathered in the clamped
and unclamped phases of learning. (In our described experiments the net-
works contain no hidden units, and therefore no diskhetsé (s) relaxation
is needed. Instead, tha’i(/-)’“ numbers are simply and quickly calculated
from a vector representing the desired network outputs

4.6.2 Constructing the Weights from the Learning Variables The
mapping from learning variables to connection weights is quite straightfor-
ward, and follows from the definition of the system energy fundiigiven
in an earlier section.

The inhibitory weights used are exactly the corresponding global learning
variables, e.g.,v(ij:: Knotlnhibition) if the bases represented by umjit,suj
form a knot. For the other, excitatory connections, the DiagonalExcitation is
multiplied by the value returned by a distance function applieédndj. The
unit bias termd; are not affected by the learning procedure. They are deter-
mined by basepair identity as described earlier, along with a factor represent-
ing the distancei ¢ ), used to account for loop penalties.

4.7 Graph-Theoretic Analysis of the Methods

It is possible to explain the mapping of 2i&NAproblem onto neural net-
works in terms of the mathematical theory of circle graphs and edge-adjacen-
cy graphs, and thereby to relate the problem to a set of well-known combina-
torics problems.

Consider an RNA sequen&es(sp ... Sy, Wheres; is one of G, C, A, or
U. A secondary structure for S may be represented by a circle graph
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wherein then nodes are points around a circle and the edgpscbrrespond

to basepairsi(j). (See Figure 5.) Edges that cross correspond to knots. All of
the substructure types and constraints on structures defined in Section 2 may
be described in terms of the circle graph. (Details may be found in [Nussinov
and Jacobson, 1980; Takefdfial, 1990].)

Consider next a grap@' with the number of nodes equal to the number
of edges inG, and an edge (X', y') iB' for each pair of edges= (i, j),y =
(k, ) in G that intersectG' is the edge-adjacency graph fér (See Figure
5.)

It is clear from the above that tB8RNAproblem is closely related to the
problem of finding the maximal independent set (the largest set of nodes
such that none of them are connected to another node in the set) of the edge
adjacency grapl' of a circle graplG for an RNA sequence S. Takefuji and
coworkers [Takefujet al, 1990] designed a neural network that finds locally
optimal solutions of the general graph MIS problem, and pointed out the
connection to predicting RNA structure.

While the similarity to the graph theoretic problem provides useful in-
sights into the essential complexity of th&kNAproblem, it is important to
recognize the limits of this similarity. To solve the graph MIS problem, even
exactly (an NP-complete task), corresponds to finding the largest set of pos-
sible basepairs such that none of them form knots. Clearly, this is not neces-
sarily the optimal RNA secondary structure. Some attempt must be made to
represent different stacking energies, the contribution of one stem to another
in a multiple loop, and other real biochemical and physical constraints. Such
attempts were made in our work, and machine learning was made central to
our model in order to further refine the representation, but there is room for
future work in exploring, possibly through graph theory, better problem rep-
resentations for parallel networks.

4.8 Evaluating Models and Mappings

Having defined the particular kind of one-layer neural network model
used, and the mapping of tB8RNAproblem onto the network model, it is
instructive to review the nature of the constraints and the information flow
within problem representations and some of the issues in representing in par-
ticular the RNA molecule and the molecular folding process.

4.8.1 Global and Local, First-Order and Higher-Order. When analyz-
ing the constraints inherent in a problem, and before choosing a representa-
tion, one may consider three dimensions along which the adequacy of a rep-
resentation (and hence a solution) will be judged. These three dimensions are
locality, order, andcompleteness a@fiformation.

A representation for molecular structure prediction may capture simulta-
neously information on all parts of the molecule, or it may only represent a
piece at a time. We say that a representatitot# if it contains information
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from only a section ok elements (bases, or amino acids) at any time. It is
globalif k = lengt{moleculg. A representation is:

1.first-order if it captures interactions between primitive elements. In the
2°RNAproblem, this means it captures base-pairing.

2. second-ordeif it captures interactions between interactions between ele-
ments. For example, the representation of stems, as resulting from interac-
tions between basepairs, is second order.

3.third-order if it captures interactions between second-order objects. The
representation of thermodynamic competition between possible RNA sub-
structures is third-order.

4. nth-order, generally, if it captures interactions between (n-1)st-order ob-
jects and events.

Completeness refers to how much of the information, in a given local
“window” and of a particular order, is captured.

Obviously, one ought to strive for a global, complete, and higher-order
representation of a problem. Also obvious is that there is a trade-off in-
volved: The more global and complete a representation is, and the higher its
order, the higher is the computational complexity.

The serial algorithms for RNA secondary structure prediction are slow
precisely because they compute with higher-order information in finding op-
timal substructures, and they do this serially over the entire molecule. A se-
guential computer generally can act globally only by covering a section at a
time and iterating over the whole sequence, and this leads to long running
times. Generally, the (non-neural) parallel algorithms do not differ drastically
in their logical structure from the serial programs. Rather, they perform es-
sentially the same steps but do it o@N) processors and thus achieve an
O(N) time savings.

The other work with neural nets on molecular structure, including Qian
and Sejnowski’'s protein secondary structure prediction project [1988] (and
see also [Bohet al, 1988]) is based on local approaches. Sejnowski used
feed-forward nets which captured only lodal(13) information. The fairly
low accuracy of local methods (of which neural net methods are the best)
and the surprising fact that, as Qian and Sejnowski discovered, higher-order
representations did not seem to raise the predictive accuracy, indicate that
more global information must be captured, perhaps using global constraint-
satisfaction [Friedrichs and Wolynes 1989] or pattern recognition [Gedller
al 1991]. Research groups also use local representations and neural networks
to predict local aspects of protdartiary structure [see Botet al, 1990 and
Holbrook, Muskal and Kim, this volume]. In RNA secondary structure, glob-
al interactions are probably more common than in protein secondary struc-
ture, and absolutely must be captured in the representation used by any com-
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putational method.

The neural net models used herein are intended to be global and higher-
order. The representation is explicitly higher-order, as the primitives (the pro-
cessing units) stand for possible basepairs. Connection weights between the
(2nd-order) units represent constraints on substructure types and competition
between possible structures, which is third-order information. This premise
implies a particular hardware complexi@(NZ) units andO(N3) or O(N4)
connections, depending on how much of, and how globally, the third-order
relationships are to be captured. (All of the 2nd-order information is repre-
sented, for the whole molecule, thus requili{tl—1)/2 units.)

This hardware complexity is very expensive — prohibitively so, for very
large RNA molecules. Thus one of the long-term goals of this project is to
find ways, using separate processing stages, approximation methods, and
forms of “time-sharing” on parallel hardware, to reduce this hardware cost
significantly.

On the other hand, this neural net approach offers a large potential advan-
tage in terms of complexity. It is believed that the costs of computation on
this problem are “paid all at once”, in the amount of parallel hardware, when
using these methods. There ateadditional incremental orders of complex-
ity addedwhen more general structures are handled. Relaxing an assumption
about the energy contribution of loops, or about the complexity of multiple
loops that are allowed, for example, can raise the runtime complexity of a se-
rial algorithm fromO(N3) to O(N®) or worse; handling the general case —
all secondary structures are possible — mandates an exponential algorithm.
However, to handle the general case with the simple model presented in this
report requires only a@(NZ)-processor, fully-connected Hopfield net.

5. Experiments and Results

5.1 General Assumptions and Methodology

In the main set of exgeriments the basic problem representation outlined in
Section Five, withO(N4) units, was used. The RNA sequences were limited

to a standard length of 30 bases. In particular, the first thirty bases of each of
41 tRNAs were used (35 training, 5 test, and 1 for playing around with).
These truncated sequences do not represent autonomous naturally-occurring
molecules. However, in order to make the experiments more manageable,
this limitation was considered necessary.

Because the 30-base sequences do not occur naturally except as compo-
nents, there are no published secondary structures for them. Therefore, the
secondary structures used in the training set of the supervised learning exper-
iment were those determined by Zuker’s serial program for RNA secondary
structure prediction, described in [Zuker and Stiegler, 1981]. The Zuker pro-
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gram is widely used and we assume it can be trusted to find the best struc-
tures for such very small sequences.

As mentioned in an earlier section, in these experiments we did not repre-
sent the local context effects on stacking energies. This omission was made
for the sake of simplicity, and it did not prevent the nets from achieving good
results on small RNAs (length 30, and, in a few preliminary experiments
with our multiresolution model, lengths from 100 to 130). However, success
on much longer sequences probably requires the local context information,
or indeed a very different problem-to-network mapping.

5.1.1 Update Algorithm and Annealing ScheduleThe network relax-
ation algorithm used in all experiments was the MFT algorithm described in
Sections Four and Five. A sweep through the network consist@Nof
1)/2 node updates; the choice of which node to update was made randomly
each time. The updating was also asynchronous. The network was run for a
given number of sweeps, unless stability (thermodynamic equilibrium) was
achieved before reaching that number; a check for stability was made after
each sweep.

In every experiment, the annealing schedule followed the same basic
form: Tipjt = 100, Tfing = 1, andAT = (Tipjt+ 1)hgyyeepdor each sweep.

5.1.2 Dissimilarity and Predictive Accuracy.We defineD, the structural
dissimilarity between two RNA secondary structures (true or predicted) to be
the proportion of possible basepairings on which they disagree:

2[r0und(aij) B b|j]2
o N(N-D)

N-1

M=

1=1j

whereg;; andbjj are the units in rowand columrj in the secondary struc-
ture matrix representation of the network and of the known secondary struc-
ture, respectively. Theund)) function rounds a number] [0, 1] to O or 1.

Predictive accuracy of a method for a given RNA sequence is therefore
measured as the number of correct positional matches between the secondary
structure matrix (prediction) and the actual known secondary structure, as a
percentage of the total number of cells in the matrix. That is, it i£100/

There are many ways to look at the problem of dissimilarity among se-
guences and structures. It is true that tRNAs are known to share a particular
overall shape — often called the “clover leaf’ pattern — that is, a main stem
and loop with three smaller subordinate stem/loop structures. However, it is
very important to note that the forty tRNAs used in these experiments differ
significantly both in terms of base composition and the particular places in
the sequences where the stems occur. They also vary somewhat in length —
from 107 to 131 bases.

The initial subsequences used in the first experiments display even more
diversity than the full-length tRNAs. Their thermodynamically optimal sec-
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Figure 6: Predictive accuracy as a function of relaxation time, for the network with
pre-set weights, with no learning

ondary structures, as determined by the Zuker program, do not all share the
same overall structure. Some have one stem, others have two or three. The
positions of the stems and loops also differ greatly. These general judgments
concerning dissimilarity are valuable, but quantitative measures are also
needed. The measurement of sequence homology is of course a standard tool
in molecular biology. However, it is not especially relevant in these experi-
ments, as sequences with a high degree of homology can produce very differ-
ent secondary structures, and sequences with very similar structures can have
a low degree of homology. Therefore, the positional matching measure of
structure similarity described above, though not an ideal measure, is prefer-
able in this case. The average structural dissimilarity among the training and
test structures for the length-30 subsequences experiments was calculated to
be 83 percent.

5.2 Pre-set Connection Weights, No Learning

The first experiment tested the predictive ability and examined the dynamics
of a network with pre-set connection weights processing a particular 30-base
sequence (initial subsequence of a tRNA f@lostridium pasteurianujn

The weights were set by hand, based on rough calculations of Hopfield-
energy values for some desired network states corresponding to “legal”
(though not actual) RNA secondary structures and the results of 20 trial-and-
error runs of the simulator. The sequence was read into the network, the bias
termsl; initialized, and the network allowed to run the MFT algorithm for
500 sweeps through the net. Figure 6 is a plot of the number of sweeps
against predictive accuracy for the simulation described.
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Figure 7: Predictive accuracy as a function of number of learning passes, 500 itera-
tions on learning trials, 200 iterations on test.

Clearly, the preset network made some progress from a random state to-
wards reasonable guesses at secondary structure. However, the predictive ac-
curacy remained low (less than 60%), and the best solution obtained was not
stable: after 250 iterations the network moved toward less optimal structures.
The next section shows the degree to which learning improved the accuracy
and stability of structure prediction.

5.3 Learning the Connection Weights

The second experiment was intended to test the capability of the basic MFT
network to learn to predict RNA secondary structure, and to use the learned
information to produce faster, more accurate, and more stable predictions
than the network whose weights were preset.

5.3.1 The Learning Algorithms.The MFT learning algorithm described
in Sections 4 and 5, modified to fit the small learning space approach, was
used in the learning experiments. A set of 35 sequence/structure samples was
used for supervised learning. Each sample was run through the “plus” and
“minus” (clamped and unclamped) phases once. Thus there were only 35
learning passes in each experiment. The global learning variables, from
which the connection weights were derived, were updated after each pass. A
pass using theest sequencahe 30-base segment from Bepasteurianum
tRNA, was tried at various intervals throughout the learning experiment to
test the abilities of the changing network. Note that a) the test sequence was
not among the training sequences, and b) the learning variables and weights
were not changed after a pass using the test sequence.

In the learning experiments, the network’s initial weights were set to a
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Figure 8. Network after 0; 5; 15 and 25; and 35 Learning Pasged.represents
the net after O learning sweeps, (b) is 5 sweeps, (c) shows the net after both
15 and 25 sweeps, and (d) shows the output at the end, after 35 sweeps.

configuration that achieved better than random performance (15%) on a se-
guence that was neither a test nor a training sequence.

5.3.2 ResultsTwo experiments were performed, on five different test se-
guences: initial subsequences from tRNAs frémpasteurianumBacillus
megaterium Streptococcus faecalidMycoplasma capricolumand My-
coplasma mycoides caprihe experiments used the same initial weight
configuration, the same learning rate, and the same annealing schedule. The
results were very similar, so we describe the results for the Gapwsteuri-
anumtRNA fragment used earlier.

In each experiment 200 sweeps were made through each annealing (minus
phase) of the training sample. Only 100 sweeps were made through the net-
work during the relaxation on the test sequence. The next diagram (Figure 7)
is a plot of the accuracy of performance of the network after 0; 5; 15; 25; and
35 learning passes. Figure 8 displays network activation (output) diagrams
for these snapshot points. Figure 8d is the correct structure (as predicted by
the Zuker program). It is clear that the network did improve its performance
drastically over the learning period. Also, its performance became quite
good: It achieved perfect predictive accuracy after 35 learning passes. It is
interesting also to note the steep improvement during the first 5 passes.

In a recent paper, Takefugit al. [1990] report similar results with their
non-learning neural net method for solving near-MIS of circle graphs. Their
method found good structures (in 2 cases, structures more stable than those
predicted by serial methods) for three RNA sequences of lengths 38; 59; and
359 bases.

6. Conclusions and Future Work

6.1 Conclusions

This report presents a new class of methods for predicting RNA secondary
structures from sequences. The methods use artificial neural networks based
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on the Boltzmann Machine model and the Mean Field Theory deterministic
approximations to the Boltzmann Machine.

The methodology described in this paper is:
Formulate th&°’RNAproblem as problem of optimization and search.

Map the search problem onto a Hopfield network (typically a method of
highly parallel local search). This mapping can be understood in terms of
some simple combinatorics and graph theory.

Avoid the problem of Hopfield local minima by using the MFT network
training and relaxation algorithms, which implement a deterministic and
“analog” (continuous) version of the stochastic Boltzmann Machine.

Use the MFT learning algorithm and a highly-structured connection
weight-sharing scheme to adjust a small set of parameters in the network’s
representation of the sequence-to-structure mapping, in order to improve
performance over time.

After an introduction to the problem and a review and analysis of search

techniques and neural network algorithms, the results of some preliminary
experiments were reported.

Experiments were performed on a set of 35 tRNA sequences and frag-

ments thereof, using neural network simulators implemented on serial com-
puters. Conclusions drawn from the experiments include:

At least on small RNA sequences, a properly-configured MFT neural net-
work can learn a few global parameters from which connection weights
can be derived that enable the accurate prediction of secondary structures.
Related work on neural network methods without learning [Takefl,

1990] demonstrates that these methods may also work on moderate-sized
RNAs.

The learning can be very efficient. 35 learning examples, each passed
through the network once, sufficed in the experiments. On each learning
pass, fewer than 400 iterations through the network always sufficed. This
fast and powerful learning is made possible by a method that constructs a
very small learning space (4 or 5 variables) for an RNA secondary struc-
ture network. This method also enables a degree of scale-invariant learn-
ing.

With the learned weights, the networks were able to converge quickly to
exactly accurate solutions on the test sequences. 200 or fewer iterations
were required.

A degree of generalization is possible. The test sequences were not part of
any of the learning sample sets, and in fact differed significantly from
many of the learning samples.
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6.2 Future Work

6.2.1 Interpreting the Network Dynamics; Representing Molecular
Dynamics. The dynamics of MFT networks configured for #i&NAprob-
lem are interesting enough to warrant further study. In particular, one would
like to discover whether the dynamics of a relaxation search implement a
particular, realistidolding pathwayfor an RNA molecule. The networks
seemto mirror Martinez’s kinetically-driven sequential cooperativity search:
large stems form first and constrain the set of possible small stems; and at
each stage the most thermodynamically favored stems appear. It would be in-
teresting to investigate whether such behavior is inherent in the MFT ap-
proach, or whether it is an artifact of particular sequences or particular pa-
rameter settings.

In general, the currently prevailing models for molecular structure predic-
tion with neural networks share an essentigiliticapproach to the problem.

In other words, a mapping is sought between sequence and final secondary or
tertiary structure, making no use of intermediate stages of folding. Future re-
search should explore ways to integrate kinetic effects and dynamical pro-
cesses.

6.2.2 Interpreting Continuous Activation Levels., Throughout this pro-
ject, we chose to round the activation states of the units to O or 1 when read-
ing them as output. The MFT relaxation algorithm also tends to drive the ac-
tivation values very close to their extrema. Thus all discussion was in terms
of elements being paired or unpaired. However, it has been pointed out that
in many cases network activation levels, read as real numbers, can be inter-
preted in terms of probabilities. Perhaps the network models could be used,
like several other RNA structure prediction programs, to predict ensembles
of near-optimal structures.

6.2.3 Bringing More Knowledge to Bear on the ProblemThe simple
representations of ribnucleotides (or amino acids) used typically in computer
programs are very limited. A ribonucleotide is in reality more than a symbol;
it is a molecule, with physical structure and several important physical and
chemical properties that can be measured. Good simulation/prediction pro-
grams should probably represent these structural units as vectors, linear com-
binations of basis vectors representing physical and chemical characteristics,
like molecular weight, steric configuration, charge, magnetic dipole, and hy-
drophobicity [Nakaigt al 1988; Hunter, 1992].

Phylogeny is another source of information. How can knowledge of the
structure and sequence of one molecule be used to predict the structure of an-
other molecule whose sequence is homologous or whose function is the
same? Majoet al[1991] describe a system for RNA secondary and tertiary
structure prediction that combines geometric, energetic, phylogenetic and
functional information within a symbolic constraint satisfaction framework.
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Their results are impressive and lead one to wonder whether the addition of
statistical induction (machine learning) methods might refine their existing
knowledge base and produce even better results.

6.2.4 Tests on Longer RNA Sequence®bviously, the methods de-
scribed herein should be tested on larger RNAs, despite the space complexity
problems afflicting the current versions of the basic algorithm (see below).
The adaptive optimization approach seems to perform very well on small
pieces of RNA when we have a reasonably large set of representative train-
ing data. However, a very similar but non-adaptive method [Taketugl,

1990] has also apparently been made to work well on some small RNAs. | do
not believe that neural networks with weights set “by hand”, or graph-pla-
narization algorithms that ignore thermodynamic subtleties, will scale up
well to larger structure prediction problems. Larger scale experiments with
adaptive algorithms will help us to determine whether a sufficient number of
RNA sequences and solved structures are available to allow machine learn-
ing methods to refine and augment the very incomplete communal knowl-
edge --- theoretical and empirical --- on the thermodynamics, kinetics, and
molecular evolutionary history of RNA folding.

6.2.5 Coarse-Grained and Multiresolution SearchThe representation
described in Section 4 is useful because it is based on an obvious mapping of
the RNA secondary structure matrix onto a neural net model, and is therefore
easily understood. However, it is not very efficient in its use of hardware
(simulated hardware, in the near term). The representation errtp(bl?s)
processing units. (In fact, it employs exadt{N—1)/2 units.) We have begun
to develop ways to approximate such large nets with much smaller ones, by
making assumptions about the covariance of members of clusters of units
and then using single units to represent clusters of units. In the RNA sec-
ondary structure prediction problem, the clusters of interest are those diago-
nal clusters of units (corresponding to diagonals irRfRNAmatrix) repre-
sentingpotential stems the secondary structure.

The key to making such coarse-grained or multiresolution methods work,
indeed the key to making any neural network method successful in molecular
structure prediction, is to find a sensible mapping of the problem onto the net-
work. Neural networks offer challenges in representing the static and dynamic
structures of RNA (or protein), but success brings the benefits of massive par-
allelism and the simple, computable, and differentiable error measures needed
for gradient descent and adaptive improvement in structure prediction. Solving
the representational problems will lead to an entirely new class of fast, parallel,
adaptive methods for predicting and simulating physical systems.

Notes

1. Much of the notation and many of the definitions in this section are
adopted from [Sankoff et al., 1983]. We found their exposition on secondary
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structure types and constraints to be the clearest by far, and we hope that
their notational conventions become a standard in the field. Their text is
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4

Predicting Protein Structural Features
With Artificial Neural Networks

Stephen R. Holbrook, Steven M. Muskal

and Sung-Hou Kim

1. Introduction

The prediction of protein structure from amino acid sequence has become
the Holy Grail of computational molecular biology. Since Anfinsen [1973]
first noted that the information necessary for protein folding resides com-
pletely within the primary structure, molecular biologists have been fascinat-
ed with the possibility of obtaining a complete three-dimensional picture of a
protein by simply applying the proper algorithm to a known amino acid se-
guence. The development of rapid methods of DNA sequencing coupled
with the straightforward translation of the genetic code into protein se-
guences has amplified the urgent need for automated methods of interpreting
these one-dimensional, linear sequences in terms of three-dimensional struc-
ture and function.

Although improvements in computational capabilities, the development of
area detectors, and the widespread use of synchrotron radiation have reduced
the amount of time necessary to determine a protein structure by X-ray crys-
tallography, a crystal structure determination may still require one or more
man-years. Furthermore, unless it is possible to grow large, well-ordered
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crystals of the protein of interest, X-ray structure determination is not even
an option. The development of methods of structure determination by high
resolution 2-D NMR has alleviated this situation somewhat, but this tech-
nique is also costly, time-consuming, requires large amounts of protein of
high solubility and is severely limited by protein size. Clearly, current exper-
imental methods of structure determination will not be able to cope with the
present and future need for protein structure determination.

Efforts toward protein structure prediction have come from two general
directions and their hybrids. The first, a molecular mechanics approach, as-
sumes that a correctly folded protein occupies a minimum energy conforma-
tion, most likely a conformation near the global minimum of free energy.
Predictions are based on a forcefield of energy parameters derived from a va-
riety of sources includingb initio and semi-empirical calculations and ex-
perimental observations of amino acids and other small molecules [Weiner,
et al 1984]. Potential energy is obtained by summing the terms due to bond-
ed (distance, angle, torsion) and non-bonded (contact, electrostatic, hydrogen
bond) components calculated from these forcefield parameters [Weiner &
Kollman, 1981]. This potential energy can be minimized as a function of
atomic coordinates in order to reach the nearest local minimum. This method
is very sensitive to the protein conformation at the beginning of the simula-
tion. One way to address this problem is use molecular dynamics to simulate
the way the molecule would move away from that (usually arbitrary) initial
state. Newton’s equations of motion are used to describe the acceleration of
atoms in a protein with respect to time; the movement in this simulation will
be toward low energy conformations. The potential energy of the molecule
can also be minimized at any point in a dynamics simulation. This method
searches a larger proportion of the space of possible confirmations.

Nevertheless, only through an exhaustive conformation search can one be
insured to locate the lowest energy structure. Even restricting the representa-
tion of a confirmation of a protein as much as possible, to only a single point
of interest per amino acid and two angles connecting the residues, the combi-
natorial aspect of an exhaustive search lead to difficult computational prob-
lems [Wetlaufer, 1973]. Under the further simplification of restricting each
atom in the protein chain to a discrete location on a lattice [Covell & Jerni-
gan, 1990] and searching the conformation space with very simple energy
equations, the exhaustive search method is feasible for only small proteins.
Alternatively, conformational space may be sampled randomly and sparsely
by monte carlo methods with the hope that a solution close enough to the
global energy minimum will be found so that other methods will be able to
converge to the correct conformation. Given an approximately correct model
from either monte carlo searches or other theoretical or experimental ap-
proaches, the technique of molecular dynamics has become the method of
choice for refinement, or improvement, of the model. This approach allows
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the moving molecule to overcome some of the traps of local energy minima
in its search for a global minimum.

In general, the energetics approach of molecular mechanics is fraught
with problems of inaccurate forcefield parameters, unrealistic treatment of
solvent, and landscapes of multiple minima. It appears that this direction will
be most valuable in combination with other methods which can provide an
approximate starting model.

The second major focus of research toward predicting protein structures
from sequence alone is a purely empirical one, based on the databases of
known protein structures and sequences. This approach hopes to find com-
mon features in these databases which can be generalized to provide struc-
tural models of other proteins. For example, the different frequencies at
which various amino acid types occur in secondary structural elements; he-
lices, strands, turns and coils, has led to methods [Chou & Fasman, 1974a;
Chou & Fasman, 1974b; Garnier, Osguthorpe & Robson, 1978; Lim, 1974a;
Lim, 1974b] for predicting the location of these elements in proteins. Even
more powerful and now widely used is the prediction of tertiary structure by
sequence homology or pattern matching to previously determined protein
structures [Blundell, Sibanda & Pearl, 1983; Greer, 1981; Warme, et al,
1974] or structural elements, such as zinc binding fingers, helix-turn-helix
DNA binding motifs and the calcium binding EF hand. A portion of a target
protein that has a sequence similar to a protein or motif with known structure
is assumed to have the same structure. Unfortunately, for many proteins there
is not sufficient homology to any protein sequence or sub-sequence of known
structure to allow application of this technique. Even proteins thought to
have similar structures on functional grounds may show such little sequence
similarity that it is very difficult to determine a proper sequence alignment
from which to propose a molecular model.

Thus, an empirical approach, which derives general rules for protein
structure from the existing databases and then applies them to sequences of
unknown structure currently appears to be the most practical starting point
for protein structure prediction. Various methods have been used for extract-
ing these rules from structural databases, ranging from visual inspection of
the structures [Richardson, 1981], to statistical and multivariate analyses
[Chou & Fasman, 1974; Krigbaum & Knutton, 1973]. Recently, artificial
neural networks have been applied to this problem with great success [Crick,
1989]. These networks are capable of effecting any mapping between protein
sequence and structure, of classifying types of structures, and identifying
similar structural features from a database. Neural network models have the
advantage of making complex decisions based on the unbiased selection of
the most important factors from a large number of competing variables. This
is particularly important in the area of protein structure determination, where
the principles governing protein folding are complex and not yet fully under-
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Figure 1: A computational node represented as a circle with weighted inputs and out-
put shown as arrows. The formula for summation of weighted input and bias (b) is
given, as well as three common functional forms of nonlinearity which may be used
by the node to determine output

stood. The researcher is then able to explore various hypotheses in the most
general terms, using the neural network as a tool to prioritize the relevant in-
formation.

The remainder of this review will discuss neural networks in general in-
cluding architecture and strategies appropriate to protein structure analysis,
the available databases, specific applications to secondary and tertiary struc-
ture prediction, surface exposure prediction, and disulfide bonding predic-
tion. Finally, we will discuss the future approaches, goals and prospects of
artificial neural networks in the prediction of protein structure.

2. Artificial Neural Networks

Artificial neural networks appear well suited for the empirical approach to
protein structure prediction. Similar to the process of protein folding, which
is effectively finding the most stable structure given all the competing inter-
actions within a polymer of amino acids, neural networks explore input in-
formation in parallel. . Inside the neural network, many competing hypothe-
ses are compared by networks of simple, non-linear computation units.
While many types of computational units exist, the most common sums its
inputs and passes the result through some kind of nonlinearity. Figure 1 illus-
trates a typical computational node and three common types of nonlinearity;
hard limiters, sigmoidal, and threshold logic elements. Nearly every neural
network model is composed of these types of computational units. The main
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Output Units
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Figure 2. A three layer feedforward neural network. The circles represent the com-
putational nodes which integrate input from the preceding layer and transmit a sig-
nal to the next layer. Arrows represent weighted links (connections) between these
nodes which modulate incoming signals. The three layer network presented is the
most common, but additional layers are possible.

differences exist in topology (node connectivity), methods of training, and
application. This article will focus primarily on one type of network, the
feedforward network trained with backpropagation for rule extraction pur-
poses. Networks are termed feedforward because information is provided as
input and propagated in a forward manner, with each computational unit in-
tegrating its inputs and “firing” according to its non-linearity. The following
sections will describe in more detail the characteristics of feedforward net-
works, the preferred method of training with backpropagation, and useful
techniques for network optimization.

2.1 Feedforward Networks

A typical feed-forward network is depicted in Figure 2. These networks
are often composed of two to three layers of nodes; input and output or input,
hidden, and output. Each network has connections between every node in
one layer and every other node in the layer above. Two layer networks, or
perceptrons, are only capable of processing first order information and con-
sequently obtain results comparable to those of multiple linear regression.
Hidden node networks, however, can extract from input information the
higher order features that are ignored by linear models.

Feedforward networks are taught to map a set of input patterns to a corre-
sponding set of output patterns. In general, a network containing a large
enough number of hidden nodes can always map an input pattern to its corre-
sponding output pattern [Rumelhart & McClelland, 1986]. Once such net-



166 ARTIFICIAL INTELLIGENCE & M OLECULAR BloLOGY

works learn this mapping for a set of training patterns, they are tested on ex-
amples that are in some way different from those used in training. While

most feedforward networks are designed to maximize generalization from

training examples to testing examples, some networks are intentionally
forced to memorize their training examples. Such networks are then tested
with either an incomplete or subtly different pattern. The output of the net-

work will be the memory that best matches the input..

2.2 Training Procedure

The process of training a feedforward network involves presenting the
network with an input pattern, propagating the pattern through the architec-
ture, comparing the network output to the desired output, and altering the
weights in the direction so as to minimize the difference between the actual
output and the desired output. Initially however, the network weights are ran-
dom and the network is considered to be ignorant. While many algorithms
exist for training, clearly the most frequently used technique is the method of
backpropagation [Rumelhart, Hinton & Williams, 1986]. Backpropagation
involves two passes through the network, a forward pass and a backward
pass. The forward pass generates the network’s output activities and is gener-
ally the least computation intensive. The more time consuming backward
pass involves propagating the error initially found in the output nodes back
through the network to assign errors to each node that contributed to the ini-
tial error. Once all the errors are assigned, the weights are changed so as to
minimize these errors. The direction of the weight change is:

AW, =u (8, [O @)
whereW; is the weight from nodeto nodej, v is a learning rateq is an

error term for nodg, O; is either the output of nodeor an input value if
nodei is an input node. If the node j is an output node, then

9 = Fj’(netj) [qu _OJ) (2)
with
net; = 3 (W, ©) 3)

where Fj’(neﬁ) is the derivative of the nonlinear activation function which
maps a unit’s total input to an output valﬂl'Fis the target output of the out-
put node and)j is the actual output. If noges an internal hidden node, then

9 = Fj’(netj) ng (5k D/\/jk) (4)

The weight change as described in Equation 1 can be applied after each
example, after a series of examples, or after the entire training set has been
presented. Often momentum terms are added and weight changes are
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smoothed to effect faster convergence times. Regardless of the training
recipe however, the main goal of the network is to minimize the totalEerror
of each output nodeover all training examplgs

E:ZZ(TJ--OJ-)Z 5)

2.3 Network Optimization

Because the rules in most input-output mappings are complex and often
unknown, a series of architecture optimizing simulations are required when
testing each hypothesis. Examples of such optimizing experiments include
varying input representation, numbers of hidden nodes, numbers of training
examples, etc. In each case, some measure of network performance is evalu-
ated and tabulated for each network architecture or training condition. The
best performing network is chosen as that which performs the best on both
the training and testing sets.

With networks containing hidden nodes, training algorithms face the
problem of multiple-minima when minimizing the output error across all
training patterns. If the error space is rugged, as is often the case in hidden
node networks, the multiple-minima problem can be a serious one. To com-
bat this problem, researchers often permute their training and testing sets and
train a number of times on each set, while reporting the best performing net-
work for each simulation. The variance between training and testing sets as
well as between training sessions helps to describe the complexity of the
weight space as well as the input-output mapping.

Generally smooth trends in performance levels immediately point to opti-
mal network architectures. One nuisance to those who are designing net-
works to generalize from training examples to testing examples, however, is
the concept of memorization or overfitting: the network learns the training
examples, rather than the general mapping from inputs to outputs that the
training set exemplifies. Memorization reduces the accuracy of network gen-
eralization to untrained examples. Sure signs of undesired memorization be-
come apparent when the network performs much better on its training set
than on its testing set; and typically, this results when the network contains
far more weights than training examples. When undesired memorization re-
sults, the researcher is forced to increase the numbers of training examples,
reduce node connectivity, or in more drastic situations, reduce the number of
input, hidden, and/or output nodes. Increasing the number of training exam-
ples is by far the best remedy to the effects of memorization. But more often
than not, especially in the area of protein structure prediction, one is con-
strained with a relatively small database. If it is not possible to increase the
database of training examples, the next best choice is to reduce the network
connectivity. This, however, poses the problem of deciding on which connec-
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tions to remove. Here, some have tried removing those connections that are
used the least or that vary the most in the training process. This process of
network pruning, however, often slows the already lengthy training process
and should be done with caution. Finally, reducing the number of network
nodes is the least desirable of all approaches since it often results in hiding
key information from the network, especially if the number of input nodes is
reduced. Similarly, reducing the number of hidden nodes often results in un-
acceptable input-output mappings; while reducing the number of output
nodes, often results in mappings that are no longer useful. Clearly, undesired
memorization is one of the greatest drawbacks with neural network comput-
ing. Until methods for alleviating the problem are developed, researchers are
forced to be clever in their design of representations and network architec-
ture.

Feedforward neural networks are powerful tools. Aside from possessing
the ability to learn from example, this type of network has the added advan-
tage of being extremely robust, or fault tolerant. Even more appealing is that
the process of training is the same regardless of the problem, thus few if any
assumptions concerning the shapes of underlying statistical distributions are
required. And most attractive is not only the ease of programming neural net-
work software, but also the ease with which one may apply the software to a
large variety of very different problems. These advantages and others have
provided motivation for great advances in the arena of protein structure pre-
diction, as the following sections suggest.

2.4 Protein Structure and Sequence Databases

Application of an empirical approach to protein structure prediction is en-
tirely dependent on the experimental databases which are available for analy-
sis, generalization and extrapolation. Since all of the studies discussed below
are dependent on these databases, a brief discussion of their contents is ap-
propriate.

The Brookhaven Protein Data Bank [Bernsteiral, 1977], or PDB, cur-
rently (April, 1990) contains atomic coordinate information for 535 entries.
These entries are primarily determined by X-ray crystallography, but some
more recent entries are from two-dimensional NMR and molecular modeling
studies. Of the 535 entries, 37 are nucleic acids, 10 are polysaccharides and
27 are model structures. Of the remaining entries many of the proteins are es-
sentially duplicated, with either minor amino acid changes due to biological
source or specific mutation or with different ligands bound. Taking these fac-
tors into account, one can estimate that the Protein Data Bank, currently con-
tains 180 unique protein coordinates sets. Besides the X, y, z coordinates of
the non-hydrogen atoms of the proteins and bound co-factors, the following
information is included in the Protein Data Bank entries: protein name, a list
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of relevant literature references, the resolution to which the structure was de-
termined, the amino acid sequence, atomic connectivity, the researcher’s
judgement of secondary structure and disulfide bonding pattern, and also
may contain atomic temperature factors (measure of mobility), coordinates
of bound water molecules and other ligands, a discussion of the refinement
scheme and its results (estimate of error), and other miscellaneous comments
the depositors may wish to make.

In addition to the information directly available from the PDB several
computer programs are available both through Brookhaven and from exter-
nal sources for calculation of additional structural parameters from the en-
tries. These programs calculate such values as the main chain conformational
angles phi and psi, the side chain torsion angles, the surface area accessible
to a water molecule, distances between all residue pairs in the form of a ma-
trix and may also make automatic assignments of disulfide bonds, secondary
structure and even super-secondary structure folding patterns. The most
widely used of these programs and the one employed for most of the neural
network studies is the DSSP program of Kabsch and Sander [Kabsch &
Sander, 1983].

Because of the difficulty of the experimental methods of protein structure
determination, the number of known three-dimensional protein structures is
much less than the number of protein sequences which have been deter-
mined. It is vital, then, to merge this information together with the structural
information of the PDB in attempts to predict protein structure. The Protein
Identification Resource [Georget al, 1986] or PIR, as of December 31,
1989 contained 7822 protein sequences consisting of 2,034,937 residues. The
amino acid sequences of these proteins were determined either by chemical
sequencing methods or inferred from the nucleic acid sequences which code
for them. The PIR database contains, in addition to amino acid sequence, in-
formation concerning the protein name, source, literature references, func-
tional classification and some biochemical information.

An even larger database of sequences is found in the GENBANK collec-
tion of nucleic acid sequences. Many of these sequences code for proteins
whose sequences may be obtained by a simple translation program. The nu-
cleic acid sequences which code for proteins may eventually become the
source for additional entries in the PIR, but because of the rapid growth of
both the GENBANK and PIR databases there currently is a large backlog of
sequences to be added to these data banks.

A variety of computer programs also are available for analysis of the pro-
tein sequence database, the PIR. These programs include those which calcu-
late amino acid composition, search for sequence similarity or homology,
conserved functional sequences, plot hydrophobicity and predict secondary
structure.
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Figure 3: A feedforward neural network of the type used by Qian and Sejnowski
[1988] for the prediction of secondary structure from a window of input amino acid
sequence. Active nodes are shaded and the connections between each node and all
other nodes above it are illustrated schematically by arrows. Only 5 input nodes are
shown for each amino acid although 21 were used.

3. Secondary Structure Prediction with Neural Networks

At present, the largest application of feedforward neural networks in the
world of protein structure prediction has been the prediction of protein sec-
ondary structure. As secondary structuedélices,3-strands 3-turns, etc)
are by definition the regions of protein structure that have ordered, locally
symmetric backbone structures, many have sought to predict secondary
structure from the sequence of contributing amino acids [Chou & Fasman,
1974a; Chou & Fasman, 1974b; Garnier, Osguthorpe & Robson, 1978; Lim,
1974a; Lim, 1974b[. Recently though, Qian and Sejnowski (1988], Holley
and Karplus [1989], Bohet al [1988], and McGregoet al [1989] have ap-
plied neural network models to extract secondary structural information from
local amino acid sequences and have achieved improved secondary structure
prediction levels over that derived by statistical analysis [Chou & Fasman,
1974a; Chou & Fasman, 1974b].

3.1 o-Helix, B-Strand, and Coil Predictions

The general hypothesis taken when attempting to predict secondary struc-
ture is that an amino acid intrinsically has certain conformational preferences
and these preferences may to some extent be modulated by the locally sur-
rounding amino acids. Using this information, network architectures of the
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Window Size Q(%) Ca Cp Ceoil
1 53.90 0.11 0.14 0.17
3 57.70 0.22 0.20 0.30
5 60.50 0.28 0.26 0.37
7 61.90 0.32 0.28 0.39
9 62.30 0.33 0.28 0.38
11 62.10 0.36 0.29 0.38
13 62.70 0.35 0.29 0.38
15 62.20 0.35 0.31 0.38
17 61.50 0.33 0.27 0.37
21 61.60 0.33 0.27 0.32

Table 1: Dependence of testing accuracy on window size (adapted from Qian & Se-
jnowski, 1988). Qis average percent correct over three predicted quantitief,(

coil). Cis correlation coefficient for each prediction type, as defined by Mathews
[1975].

type in shown in Figure 3 have been designed to predict an amino acid’s sec-
ondary structure given the sequence context with which it is placed.

Qian and Sejnowski [1988] and others [Holley & Karplus 1989; Exthr
al. 1988] have shown that a locally surrounding window of amino acids does
improve prediction levels as shown in Table 1. This table indicates that when
the size of the window was small, the performance on the testing set was re-
duced, suggesting that information outside the window is important for pre-
dicting secondary structure. When the size of the window was increased be-
yond 6 residues on each side of a central residue, however, the performance
deteriorated. Therefore, when using only local sequence information,
residues beyond 6 residues in each direction contribute more noise than in-
formation in deciding a central amino acid’s secondary structure.

Further attempts at improving prediction levels by adding a variable num-

Hidden Units Q(%)
0 62.50

5 61.60

10 61.50

15 62.60

20 62.30

30 62.50

40 62.70

60 61.40

Table 2: Testing of secondary structure prediction versus number of hidden nodes.
(adapted from Qian & Sejnowski, 1988)
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Figure 4: Relationship between prediction accuracy on the Training and Testing sets
and number of residues in the Training set. Adopted from Qian and Sejnowski

[1988]i

ber of hidden nodes as seen in Table 2 were only slightly successful. In fact,
the best performing network containing 40 hidden nodes offers only a small
improvement over the network containing O hidden nodes. This result sug-
gests that the mapping between flanking amino acid sequence and an amino
acid’s secondary structure is of first order, requiring little if any higher order
information (information due to interactions between 2 or more residues in
the input sequence).

Further studies showed the maximum performance of the network as a
function of the training set size as seen in Figure 4. The maximum perfor-
mance on the training set decreases with the number of amino acids in the
training set because more information is being encoded in a fixed set of
weights. The testing set success rate, however, increases with size because
the larger training set increases the network’s generalization ability. Figure 4
nicely depicts the concept of memorization. When the training set is small,
the network can memorize the details and suffers on the testing set. When the
training set is large, memorization is not possible and generalization is
forced. Furthermore, Figure 4 suggests that any additional increase in the
size of the training set is unlikely to increase the network’s testing perfor-
mance, implying that more information for predicting secondary structure is
required than that contained in a window of 13 consecutive amino acids.
This missing information is undoubtedly in the tertiary contacts between
residues in the proteins. The three-dimensional fold of the protein chain en-
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Method K(%) Ca CB Ceoil
Chou-Fasman 50.00 0.25 0.19 0.24
Garnier 53.00 0.31 0.24 0.24
Lim 50.00 0.35 0.21 0.20
Qian & Sejnowski - 1 62.70 0.35 0.29 0.38
Qian & Sejnowski - 2 64.30 0.41 0.31 0.41
Holley & Karplus 63.20 0.41 0.32 0.36

Table 3: Accuracy comparison of methods of secondary structure prediction. Qian &
Sejnowski - 1 is their perceptron network, Qian & Sejnowski - 2 includes a smooth-
ing network using predictions from the first network as input. See text.

velopes most of the amino acids in a unique environment, thus modifying
their inherent tendencies toward a particular secondary structure. A predic-
tion limit is therefore approached when only local sequence information is
available.

The performance of Qian and Sejnowski's network compared to those
prediction methods of Garniet. al.[1978], Chou & Fasman [1974b], Lim
[1974], and Holley & Karplus [1989] is shown in Table 3. Clearly, the neural
networks out-perform those methods of the past. Approximately 1% of the
11% improvement in Table 3 between Garnier's method and the neural net-
work method is attributed to the difference between the network’s training
set and the set of proteins used to compile Garnier’s statistics.

One benefit of using networks containing no hidden nodes is the ease with
which the network weights can be interpreted. While Sanger [Sanger, D.,
Personal Communication] has developed a method of weight analysis for
hidden node networks called contribution analysis, the technique is still in its
infancy. Until more researchers turn to this or other methods of hidden node
network weight analysis, graphical representations of the weights from input
to output nodes will have to suffice.

Figure 5 details the relative contribution to the decision of a secondary
structure made Qian and Sejnowski’'s network for each amino acid at each
window position. Here, correlations between each amino acid’s sequence
specific secondary structure preference and its physical properties can be
readily extracted.

In a parallel study to that of Qian and Sejnowski, Holley and Karplus
[1989] have designed a similar network for prediction of secondary structure.
Their optimal network contains an input layer of 8 amino acids on either side
of the residue of interest (window size equals 17), a hidden layer of two
nodes and an output layer of two nodes. The two node output layer describes
three states: helix, strand and coil by taking on values of 1/0, 0/1 and 0/0 re-
spectively. Since the actual values of these nodes lie between 0 and 1, a cut-
off value or threshold was determined which optimized the network predic-
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Figure 5: The relative values of the connection weights obtained by Qian and Se-
jnowski [1989] in their perceptron network for prediction of helix (a), strand (b) and
coil (¢) from amino acid sequence. For each window position and amino acid type
the weight of its link to the next layer is represented as a shade of gray. Darker
shades indicate higher weights. The amino acid residues in this and following simi-
lar figures are in order of decreasing hydrophobicity according to Eisenberg [1984]
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tion. The maximum overall prediction accuracy on the training set was

63.2% (Table 3) over three states wity G.41, (3 0.32 and G 0.36

which are very similar to the results discussed previously. They also noted an
increase in prediction accuracy for residues near the amino-terminus and for
highly buried versus partially expospestrands. Finally, residues with high-

er output activities were found to be more accurately predicted, i.e. the

strongest 31% of predictions were 79% correct. The Holley and Karplus per-
ceptron network has recently been implemented on an IBM-compatible mi-

crocomputer and shown to reproduce their results [Pascarella & Bossa,
1989].

Attempting to extend these studies, Behal.[1988] designed three sep-
arate networks to predict simply if a residue was in a helix or not, strand or
not, and coil or not given a window of 25 residues on each side of a central
amino acid. Clearly, by the size of this network, memorization was in-
evitable. But they, as will be mentioned in their approach to tertiary structure
prediction, seem to desire memorization. In fact, their approach seems to
have led to a new measure of homology.

Again using a window of 25 residues on each side of a central amino acid,
but extending the output t-helix, B-strand, and coil, Bohet al trained a
network similar to Qian and Sejnowski's on one member of a homologous
pair of proteins. The percent performance on the other protein, then, indicat-
ed the degree of homology. In this way, Behral used to their advantage
the concept of network memorization to determine the degree of similarity
between protein sequences, without requiring any sequence alignment.

In a practical application of neural networks for the prediction of protein
secondary structure, a prediction of helix and strand location was made for
the human immunodeficiency virus (HIV) proteins pl7, gp120 and gp41l
from their amino acid sequences [Andreasstrgl, 1990]. The input layer
used an amino acid sequence window of 51 residues (1020 binary units) and
a hidden layer of 20 units. Separate networks were trainexttietices and
B-strands and used in their prediction.

3.2 [turn Predictions

In order for proteins to be compact, folded structures that pack their sec-
ondary structures into remarkably small volumes [Richardson, 1981; Rose,
1978], they must have a number of chain revergalEurns are a specific
class of chain reversals localized over a four-residue sequence[Richardson,
1981; Venkatachalam, 1968] and are defined by having a distance between
Ca(i) and Qx(i+3) of < 7A. Seven classes (I,I',1L1I',VIa,VIb,VIII) and a
miscellaneous category (IV) have been defined [Richardson, 1981; Venkat-
achalam, 1968; Lewis, Momany & Sheraga, 1973] and differ by hydrogen
bond interactions between involved residues. The most common classes of
turns being | and Il (41 and 26% of all turns), for example, have a specific
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Figure 6. The network architecture used by McGregor, et al. for identificatifh of
turns. The input layer is a sequence of 4 amino acids comprifigra or non-turn
presented to the network as 20 nodes per amino acid. The output layer has one node
per turn (or non-turn) type. Shaded circles indicate activated nodes and dashed ar-
rows schematically represent the weighted links between all node.

hydrogen bond interaction between the C=0 of residue i and the N-H of
residue i+3.

Similar to the prediction ofi-helices and3-strands, network predictions
for B-turns begin with the hypothesis that the information necessary to force
the sequence of amino acids intf-turn exists locally in a small window of
residues. The network architecture designed to further this notion is depicted
in Figure 6. Once again, the input to the network encodes a string of amino
acids. The output classifies the sequence as one of four types, Type |, Type
II, Non-Specific, or Non-turn.

Because the window size is fixed at four by the definitiof-tfrns, the
only network optimizing simulations required were those that determine op-
timal numbers of hidden nodes. McGregpral. [1989] have reported, as
shown in Table 4 a network performance with 0 (perceptron) and 8 hidden
nodes. Statistics were calculated for six different testing sets and the mean
value is indicated. Table 4 also compares the performance of these networks
to the method of Chou and Fasman [1974b]. The low values for the overall
prediction accuracy reflect the stringent requirement that all four residues in
the B-turn must be correctly predicted. On an individual residue basis, 71%
of the predictions are correct compared to a chance level of 58%.

A commonly occurring issue addressed in this paper is how to adjust the
relative ratio of the four different turn types (different outputs) in the training
set. Since the numbers of types of turns and non-turns differ considerably, it
was important to decide how frequently to sample each input type. Sampling
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Prediction Method % correct f4urn

Perceptron 241 0.177
Hidden Layer Network  26.0 0.202
Chou-Fasman 20.6 0.167

Table 4: Statistics fof-turn prediction

of each type with equal frequency led to a large overdetermination of turns,
however if the sequences were sampled according to the frequency at which
they actually occur then all the predictions were for non-turns. The authors
finally used a trial and error approach, obtaining the best results by sampling
type |, I, non-specific turns and non-turns in the ratio 6:3:8:34, approximate-
ly the correct ratio except that the non-turns were reduced by a factor of six.
This biased distribution of examples may partially account for the low pre-
diction performance obtained with this network.

3.3 Secondary Structure Composition Predictions

Given the above mentioned work, it appears that the information encoded
in small windows of local sequence is sufficient to correctly predict approxi-
mately two-thirds of a protein's secondary structure [Qian & Sejnowski,
1988; Holley & Karplus, 1989; McGregor, et al, 1989]. Because of this less
than satisfactory rate of prediction, many have sought to improve the accura-
cy of secondary structure predictions by adjusting predictions based on a
consensus of many predictive methods [Nishikawa & Ooi, 1986], the sec-
ondary structure of seemingly similar proteins [Nishikawa & Ooi, 1986;
Levin & Garnier, 1988; Zvelebikt al, 1987], and am priori knowledge of
secondary structure composition [Garnétral, 1978]. In attempts to predict
the latter, others have noted that there exists a correlation between secondary
structure composition and amino acid composition [Crick, 1989; Nishikawa
& Ooi, 1982; Nishikawaet al, 1983].

Neural networks have recently been applied by Muskal and Kim [1992] to
the problem of mapping amino acid composition to secondary structure com-
position. They trained a network to map a string of real numbers representing
amino acid composition, molecular weight and presence or absence of a
heme cofactor onto two real valued output nodes corresponding to percent
helix and percen-strand. A second, or tandem, network was used to detect
memorization and maximize generalization.

Networks with and without hidden nodes were able to accurately map
amino acid composition to secondary structure composition. The correlations
between predicted and real secondary structure compositions for the net-
works containing no hidden nodes are quite similar to those obtained by
techniques of multiple linear regression [Krighaum & Knutton, 1973; Horne,
1988] and by standard statistical clustering methods [Nishikawa & Ooi,
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1982; Nishikawa, et al, 1983], while those obtained with hidden node net-
works are considerably greater.

The improved performance with networks containing hidden nodes is
likely a result of the information contained in combinations of the quantities
of each amino acid type, i.e. x amount of Ala with y amount of His. Perhaps
secondary structure content is dependent both on composition individual
amino acids and on combinations of these compositions. Therefore, in the in-
terest ofde novaand secondary structure design, serious consideration of po-
tential protagonist and/or antagonist amino acid composition combinations
may lead to improved success rates.

The hidden node network's high accuracy, however, (within +5.0% and
+5.6% for helix and strand composition respectively) is the best predictive
performance for secondary structure composition to date and can be attribut-
ed to the non-linear mapping of multi-layer neural networks. It should be
noted that the error in these predictions is comparable to the errors associated
with the experimental technique of circular dichroism (Johnson, 1990).

Utilizing the network weights made available from Qian and Sejnowski
[1988] and counting secondary structure predictions, total average errors for
helix, strand, and coil composition were approximately +9.1%, +12.6%, and
+12.9% respectively. By correcting for predicted secondary composition,
Qian and Sejnowski's predictions can be altered to improve the prediction
rate from 64% to 67%. Clearly, though secondary structure composition pre-
dictions are useful and can offer some improvement to secondary structure
prediction, secondary structure predictions do appear to have reached a
plateau. This leveling of secondary structure predictions has inspired more
effort in the direction of predicting tertiary interactions, as the next sections
will suggest.

4. Prediction of Amino Acid Residues on the Protein Surface

The residues on a protein surface play a key role in interaction with other
molecules, determine many physical properties, and constrain the structure
of the folded protein. Surface exposure of an amino acid residue can be
guantified as the area accessible to a water molecule in the folded protein
[Lee & Richards, 1971]. The calculation of solvent accessibility, however,
has generally required explicit knowledge of the experimentally determined
three-dimensional structure of the protein of interest.

Recently, Holbrooket al [1990] have applied neural network methods to
extract information about surface accessibility of protein residues from a
database of high-resolution protein structures. Neural networks of the type
seen in Figure 7 were trained to predict the accessibility of a central residue
in context of its flanking sequence.

In order to predict surface exposure of protein residues, it is first neces-
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Figure 7. Neural network architecture used for the prediction of solvent accessibility
of amino acid residues in proteins. Each amino acid in the window was represented
by activating one of 21 binary input nodes. The output consisted of either one, two, or
three nodes, corresponding to either a continuous, binary (buried/exposed) or
ternary (buried/intermediate/exposed) definition of accessibility

sary to define categories for the buried and exposed residues. Recent defini-
tions [Roseegt al, 1985] use the fractional exposure of residues in folded pro-
teins compared with a standard, fully exposed state such as found in extend-
ed tripeptides. In the network analysis, two definitions of surface accessible
residues were used: 1) a binary model in which buried residues are defined as
those with less than 20% of the standard state exposure and accessible
residues as those greater than 20% fully exposed and 2) a ternary model in
which a residue is either fully buried (0-5% exposure), intermediate (5-40%)
exposure, or fully accessible (greater than 40% exposure). A continuous
model, which required prediction of the actual fractional exposure was also
explored.

The neural networks used in this study contained either zero (perceptron)
or one hidden layers and weights set by backpropagation (see Figure 7). The
protein sequences were presented to the neural netwonksdmsvs,or sub-
sequences, of 1-13 residues centered around and usually including the amino
acid of interest, which slide along the entire sequence. For experiments in-
volving only the flanking residues, the central residue was omitted from the
window.

4.1 Binary Model

Window size was varied between 1 (no neighbors) and 13 (6 amino acids
on either side of the central) residues for both training and testing networks
containing two outputs. Table 5 shows the results of these experiments. The
correct overall prediction for the training set is seen to reach a maximum of
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about 74% at window size 11 (-5:5) with a correlation coefficient of 0.48.
The highest percentage of correct prediction, 72%, and correlation
coefficient, 0.44, for the testing set was obtained with a window size of 9 (-
4:4) residues. This is only a 2% increase over the 70% obtained with net-
works trained on patterns of only single amino acids (window size 1). To in-
vestigate the significance of this difference and the influence of flanking
residues on exposure or burial of the central residue a network using exam-
ples consisting obnly the flanking residues and excluding the central residue
was trained and tested on the same databases. This network was able to pre-
dict exposure of the central residue in 55.3% of the cases with a correlation
coefficient of 0.10 indicating that the sequence of the flanking residues has a
small, but significant effect on exposure of the central residue.

Analysis of the predictive capacity of the trained network as a function of
location of the residue being predicted in the protein sequence indicated that
the residues at the extreme N-terminus can be predicted with much greater
accuracy than the protein as a whole. The 10 amino terminal residues of the
proteins in the testing set can be correctly predicted in 84% of the cases (cor-
relation coefficient 0.50). A similar, but smaller effect is seen for the residues
at the carboxy-termini where 75% of the predictions are correct (correlation
coefficient 0.47). The high predictability of the N-terminal residues may
reflect the fact that this is the first region of the protein synthesized and as
such exists transiently in a different environment from the remainder of the
protein. It should also be noted that both the N-terminal and C-terminal por-
tions of the chain are more hydrophilic than the bulk of the protein.

An advantage of neural network analysis is that a prediction of surface ex-
posure is based on quantitative activity values at each of the output nodes.
Therefore a confidence level may be assigned to each prediction based on the
strength of the output activities. While the accuracy of prediction increases
with the minimum activity accepted, a corresponding decrease is seen in the
percent of the total residues whose accessibility is predicted. For example,
using the binary model of accessibility, while 100% of tested residues are
predicted with an accuracy of 72%, over half of the residues with the
strongest activities are predicted with greater than 80% accuracy.

4.2 Ternary Model

The use of a three state exposure model offers several advantages over the
two state model. First, the definition of buried and exposed residues is
clarified since intermediate cases are classified as a third category. Second, it
is possible to reproduce the observed distribution more closely by allowing
more classes. Finally, if it is not necessary to distinguish between fully and
partially exposed residues, it is possible to predict exposure with very high
accuracy. In experiments involving three-state prediction (buried, partially
exposed, and fully exposed), window size was from 1 to 9 residues, at which



HoLBROOK, MuskaL & Kim 181

Window %Correct %Correct %Correct %Correct

Size Train Test Train Test
Binary Binary Ternary Ternary

1 69.1 70.0 49.1 50.2
3 70.1 69.5 52.4 51.1
5 71.0 70.8 54.1 50.1
7 71.9 71.8 55.9 52.0
9 72.5 72.0 57.5 49.8
11 73.9 71.8 - -

13 73.4 70.7 - -

Table 5: Solvent exposure predictions

point prediction of the testing set began to decrease. Table 5 gives the results
of these experiments for both the training and testing datasets. For both
datasets, the fully buried and exposed residues are predicted with greater ac-
curacy than the partially exposed residues As in the experiments with a bina-
ry representation, the exposed residues in the testing set are consistently pre-
dicted approximately 10% more accurately than the buried. The overall peak
in prediction with the ternary model occurs for the testing set at window size
7 (-3:3) after which a decline occurs. Experiments with networks containing

a hidden layer of computational nodes between the input and output layers
resulted in an improvement in prediction for window size 7 and three output
states. The maximal improvement was observed when using 10 hidden
nodes, which predicted the testing set with 54.2% overall accuracy, com-
pared to the best prediction of 52.0% with a perceptron network.

Using this three state network with hidden nodes, a residue which is pre-
dicted to be fully exposed was actually found to be fully or partially exposed
over 89% of the time, while a residue predicted to be buried was found fully
or partially buried in 95% of the cases. The difference in prediction percent-
age for buried and exposed is in large part due to overprediction of the fully
exposed state and underprediction of the fully buried state by the network. If
only fully exposed or fully buried residues are considered (cases observed or
predicted to be partially exposed are ignored) the states are predicted correct-
ly for 87% of the residues. The hydrophobic residues were predicted with
very high accuracy (86-100%) as are the hydrophilic residues (75-100%).
The ambiphilic residues glycine and threonine were, as expected, predicted
with less accuracy (68% and 60% respectively), but the ambiphilic residues
methionine, alanine and histidine are predicted with 90-100% accuracy. Even
the hydrophobic residue valine is correctly predicted to be exposed in one
case and the hydrophilic residue proline is predicted correctly to be buried in
one case.
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4.3 Continuous Model

In order to assess the potential for prediction of the percent of fractional
exposure without regard to arbitrary definitions of burial and exposure, a di-
rect mapping can be effected from amino acid sequence represented in a bi-
nary form as described above (21 nodes per residue) to fractional exposure
(S. Holbrook, unpublished results). This mapping utilized real numbers (the
actual or predicted fraction exposures of the central residue) as the output
nodes which are fit in the training process. Using a window size of 9 amino
acid residues, the training set converged at a correlation coefficient of 0.561
with an average deviation between observed and calculated exposure of
17%. This trained network was able to reproduce the exposures of the
residues in the testing set with a correlation coefficient of 0.508 and average
deviation of 18%.

4.4 Analysis of Network Weights

Examination of the network weights allowed the physical interpretation of
the major factors influencing residue exposure. From the plot of network
weights in the binary model shown in Figure 8, it is apparent that the primary
factor governing exposure of the strongly hydrophobic and hydrophilic
residues is the identity of the central amino acid itself, however for neutral or
ambiphilic residues such as proline and glycine the flanking sequence is
more influential. Nevertheless, the weights show that hydrophobic residues 2
or 3 amino acids before or after the central amino acid favor its burial. This
is likely due to the preponderance of buried residug®-dirand and to a
lesser degree-helical structures and the periodicity of these structures.
Since exposed residues are favored over buried in turn and coil regions, ex-
posure of the central residue is favorably influenced by neighboring residues
such as proline and glycine which preferentially are found in these regions.
As turns and coils are not periodic structures, less positional specificity is ob-
served for the exposed residues than for buried residues which prefer regular
secondary structure.

The weights to the output nodes of the three state model show a greater
contribution of neighboring residues to the exposure of the central residue,
especially for the intermediate (partially exposed) node, which is not strong-
ly determined by the central residue alone (not shown). The weights (not
shown) suggest that larger residues (i.e. W, H, Y and R) tend towards inter-
mediate exposure (correlation coefficient 0.35) regardless of their hydropho-
bicity. Generally, high weights for neighboring hydrophobic residues tend to
favor burial of the central residue and high weights for neighboring hy-
drophilic residues favor exposure of the central residue.

In summary, neural network models for surface exposure of protein
residues make highly accurate predictions of accessibility based solely on the



HoLBrROOK, MuskAL & Kim 183

WI'Y FLVMCAGHPSTNQDETKR -

e

)

AW NR OKRNOA

WlI'Y FLVMCAGHPSTNQDETKR -

AWNROKRNOA

B

Figure 8. Network weights for binary model of surface exposure.. (a) is the weight
matrix for the buried residue predictions, and (b) is the matrix for the exposed
residue predictions.

identity of the amino acid of interest and its flanking sequence. This capabili-
ty is a valuable tool to molecular biologists and protein engineers as well as
to those concerned with the prediction of protein structure from sequence
data alone.

5. Prediction of Cysteine’s Disulfide Bonding State

The bonding states of cysteine play important functional and structural
roles in globular proteins. Functionally, cysteines fix the heme groups in cy-
tochromes, bind metals in ferredoxins and metallothioneins, and act as nucle-
ophiles in thiol proteases. Structurally, cysteines form disulfide bonds that
provide stability to proteins such as snake venoms, peptide hormones, im-
munoglobulins, and lysozymes.

Because free thiols are unstable relative to S-S bridges in the presence of
oxygen, cysteines are typically oxidized into disulfide bonds in proteins leav-
ing the cell; and conversely, because S-S bridges are unstable relative to free
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Figure 9. The cysteine network architecture. For clarity, only 6 window positions (3
amino acids to the N-terminal and 3 amino acids to the C-terminal side of the omit-
ted centered cysteine) and 6 nodes per window position are illustrated. The netis a
perceptron with two output nodes, one for disulphide bonded cysteines (S-S) and one
for hydrogen bonded (S-H).

thiols in reducing environments, cysteines are typically reduced in proteins

that remain inside the cell. Predictions of the disulfide bonding state of cys-

teines based only on this criterion, however, result in failures for extracellu-

lar proteins containing free thiols such as actinidin, immunoglobulin, papain,

and some virus coat proteins and for cystine containing intracellular proteins
such as trypsin inhibitor, thioredoxin, and superoxide dismutase. Further-

more, to base positive disulfide bond predictions on high cysteine content
and even parity result in failures for ferredoxins, metallothioneins, and some
cytochromes. Clearly, predictions based on these simple rules fail to capture
the unique micro-environments a protein structure imposes on its cysteines to
define their disulfide bonding states.

Recently, Muskakt al [1990] used a network of the architecture seen in
Figure 9 to predict a cysteine’s disulfide bonding state, with the presumption
that it is the local sequence that influences a cysteine’s preference for form-
ing a disulfide bond. The networks were of the feedforward type containing
no hidden nodes (perceptrons). Because every sequence presented to the net-
works contained a centered cysteine, the input layer encoded a window of
amino acid sequence surrounding but not including, the central cysteine, as
shown in Figure 9

Network performance depended on the size of the window around a cen-
tered cysteine. For testing, 30 examples were randomly selected (15 exam-
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Window %Train Gs-bond %Test Gs-bond
-1:1 65.7 .30 60.0 .22
-2:2 72.8 .45 66.7 .34
-3:3 79.1 .57 73.3 .51
-4:4 83.9 .67 73.3 .48
-5:5 85.7 71 80.0 .61
-6:6 88.2 .76 80.0 .60
-77 91.4 .82 80.0 .61

Table 6: Dependence of training and testing success of the cysteine net on window
size. Window of —x:x has x amino acids on either side of the cysteine. C's are Math-
ews [1975] correlation coefficients.

Run %Correct Train %Correct Test
S-S S-H S-S S-H
1 89.7 83.3 80.0 80.0
2 89.4 82.3 80.0 80.0
3 89.7 83.3 90.0 70.0
4 90.2 83.0 70.0 90.0
5 90.5 83.0 70.0 100.0
6 90.5 84.3 90.0 70.0
7 90.0 82.7 90.0 70.0
Average 90.0 83.1 81.4 80.0

Table 7: Cross validation runs for cysteine network with window —5:5.

ples of sequences surrounding disulfide bonded cysteines; 15 examples of se-
guences surrounding non-disulfide bonded cysteines) from the pool of 689
examples, leaving the remaining 659 examples for a training set. The
influence of flanking sequence on a centered cysteine was determined by in-
creasing window of sequence surrounding the cysteine and tabulating the
network’s predictive performance. As seen in Table 6, the network’s perfor-
mance on both the training and testing sets increases with increasing window
size. It should be noted that after window -7:7 (14 flanking amino acids, 21
nodes per amino acid, 2 output nodes, and 2 output node biases corresponds
to 14 * 21 * 2 + 2 = 590 weights), the number of weights begins to exceed
the number of training examples. As a result memorization becomes appar-
ent after a window of -6:6, suggesting that the windows -5:5 or -6:6 are opti-
mal for predictive purposes. Furthermore, Table 6 shows that trained net-
works made accurate predictions on examples never seen before thus
supporting the hypothesis that a cysteine’s propensity and/or aversion for
disulfide bond formation depends to a great extent on its neighbors in se-
quence.

Network performance for each set was evaluated by testing on a random
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Figure 10. Secondary structure surrounding disulfide bonded cysteines. Secondary
structure proportion is calculated by summing number of individual secondary struc-
ture types and dividing by the total number of secondary structure occurring in that
window position. Secondary structure assignments were made by the method of Kab-
sch and Sander [1983].

subset of 20 examples (10 examples of sequences surrounding disulfide
bonded cysteines; 10 examples of sequences surrounding non-disulfide bond-
ed cysteines) taken from the pool of 689 examples after training on the re-
maining 669 examples. Each experiment was conducted independently on
networks with a window -5:5 (5 amino acids to the left and 5 to the right of a
central cysteine).

After window size experiments were completed, 7 independent training
and testing experiments were conducted so as to determine an average per-
formance that was not dependent on any particular training and testing set.
Table 7 indicates that a network can be trained to predict disulfide bonded
scenarios 81.4% correctly and non-disulfide bonded scenarios 80.0% correct-
ly. Trained networks made accurate predictions on sequences from both ex-
tracellular and intracellular proteins. In fact, for the extracellular proteins ac-
tinidin, immunoglobulin, and papain, the odd cysteines not involved in
disulfide bonds were correctly predicted as such. Likewise, for the intracellu-
lar cystine-containing proteins such as trypsin inhibitor and superoxide dis-
mutase, every cysteine’s state was correctly predicted.

Figure 10 shows the secondary structure proportion as a function of win-
dow position for disulfide bonded cysteines. Here the sequences surrounding
and including half-cysteines seem to prefer the extended conformafgen of
sheets over that of turns and bends. The secondary structural preferences of
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Figure 11. Weights for the connections to the S-S (a) and S-H (b) nodes averaged

over the 7 network experiments in Table 8. Dark shades indicate high and light
shades indicate low S-S (S-H) propensity.

half-cysteines perhaps enable the high prediction rate of a cysteine’s disulfide
bonding state. Note that in Figure 10, beyond +5 residues from the central
half-cystine (coinciding with the selected network window size) the prefer-
ences for any secondary structure are greatly reduced.

Figure 11 is a graphical depiction of the weights averaged from the seven
network experiments. Note that cysteines at positions £3 are not very con-
ducive towards disulfide bond formation. This can be explained by the fre-
guent occurrence of CYS-x-x-CYS in heme and metal binding proteins.
However, cysteines at position 1 increase the propensity considerably. This
can be explained by the frequent occurrence of CYS-CYS in extracellular
proteins, where the cysteines can form a basis for linking three chain seg-
ments in close proximity. Figure 11 also shows a positive influence of closely
centered3-sheet forming residues such as ILE, TYR, and THR on disulfide
bond formation.

The contribution an individual amino acid may have towards disulfide
bond formation, irrespective of window position, can be seen in Figure 12.
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Figure 12. Amino acid contribution to disulphide bond formation. Weights from the
7 network experiments in Table 8 were averaged for each amino acid over all win-
dow positions. Bars represent the weights to the S-H node subtracted from the
weights to the S-S node. Bars above the midline indicate a propensity to form S-S
bonds, and those below tend to form S-H bonds.

One clear pattern is that the residues contributmgardsS-S bond forma-

tion are polar and/or charged while thagminstformation are primarily hy-
drophobic. The effects of a locally hydrophobic environment could help to
bury a cysteine to make it less accessible to other cysteines, thus reducing the
chances of disulfide bond formation. Conversely, the effects of a locally hy-
drophilic environment could help to maintain cysteines in solution thus mak-
ing them more accessible to one another and to increases the chances of
disulfide bond formation.

The most striking features in Figure 12 exist between similar amino acids.
TYR, for example, is highly conducive towards disulfide bond formation, yet
PHE and TRP disfavor formation quite strongly. Electrostatic interaction be-
tween the edge of aromatic rings and sulfur atoms is found to be more fre-
guent between aromatics and half cysteines than with aromatics and free cys-
teines. Figure 13 also suggests that TYR will favor disulfide bond formation
over the other aromatics simply because PHE and TRP lack hydrophilic
character. Likewise, ARG suggests S-S formation more strongly than LYS.
Again, hydrophilic arguments find ARG more polar and thus more favorable
for S-S formation. Less obvious, however, is the strong S-S propensity of
ASN relative to GLN. Perhaps it is ASN’s smaller size that better enables the
close approach of a potential half-cystine. Consistent with this, the S-S
propensity of GLY, ASP and SER exceed that of their slightly larger counter-
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Figure 13. Network for prediction of protein tertiary structure. Input window is 30
residues to either side of the residue of interest, each represented by 20 nodes (one of
which is activated). The output level consists of two parts; a window of 30 residues
corresponding to those to the left of the central in the input which contains a 0 or 1
reflecting whether the residue is within 8A of the central position. The other 3 output
nodes specify the secondary structural type of the central residue.

parts ALA, GLU and THR. These differences in S-S propensity between oth-

erwise very similar amino acids may make feasible the stabilization and/or

destabilization of disulfide bonds through the site-directed mutagenesis of se-
guences surrounding half-cysteines.

The results of this network analysis suggest that tertiary structure features,
such as disulfide bond formation, may be found in local sequence informa-
tion. More experiments will need to be conducted to further exploit the infor-
mation content in local amino acid sequence. Perhaps this will suggest a new
twist to protein structure prediction.

6. Tertiary Structure Prediction with Neural Networks

Bohr, et al, [1990] recently reported the use of a feedfoward neural net-
work trained by backpropagation on a class of functionally homologous pro-
teins to predict the tertiary folding pattern of another member of the same
functional class from sequence alone. The basis of this approach is that the
commonly used binary distance matrix representation of tertiary protein
structure, will be similar for members of a homologous protein family. In this
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representation the protein sequence is plotted along both the vertical and hor-
izontal axes and points are placed on the graph to indicate wherg,tp@ C
sitions are within a specified distance in the three-dimensional structure. The
network using tertiary structure information given as binary distance con-
straints between Latoms as well as a three-state model of secondary struc-
ture in the output layer and a sliding window of amino acid sequence as the
input layer of a three-layer network is shown in Figure 13.

The input layer encompassed a window of -30 to +30 residues around the
residue of interest (central residue) and the output a window of the 30
residues preceding the central residue. For input, each amino acid position
was defined by 20 nodes each with a value of zero except for the one corre-
sponding to the actual amino acid which had a value of one. The output layer
consisted of 33 nodes, 30 representing the residues preceding the central
residue and having values of zero or one depending on whether the distance
to the central residue was less than or greater than 8 A (in some cases 12 A
was used) respectively, and three nodes indicating secondary structure of
helix, sheet, or coil.

This network is characterized by a very large number of computational
nodes and variable weights. For input 1220 units (20x61) were used, in the
hidden layer 300-400 units, and in the output 33 units. The total number of
weighted links is therefore 375,900 or 501,200 for the two types of networks
used. Clearly, a network containing this many weights has the capacity to
memorize the small training set of 13 protease structures. The learning of the
training set to a level of 99.9% on the binary distance constraints and 100%
on the secondary structure assignment, indicates that the network memorizes
the training set effectively, but is unlikely to incorporate generalizations.
Thus, although the architecture is quite different, the application of this feed-
forward network is analogous to an associative memory network.

This network is quite similar to the associative memory Hamiltonian ap-
proach which has been applied for tertiary structure prediction [Friedrichs &
Wolynes, 1989], thus raising the possibility that an associative memory type
neural network may be useful for the storage and retrieval of protein three-
dimensional folding patterns. However, it is doubtful whether this approach
can predict tertiary structure of proteins which are not homologous to pro-
teins on which the network was trained

7. Long Range Goals

While the ultimate goal of protein structural prediction is obviously to
produce a complete set of three-dimensional atomic coordinates solely from
the amino acid sequence, the best approach to this goal and the most impor-
tant intermediate goals are still not defined. First, it should be realized that
there is no such thing as a unique set of three-dimensional coordinates of a
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Figure 14. A possible strategy for protein structure prediction.

protein: i.e. all proteins are mobile to a greater or lesser degree and most can
assume different conformations depending on environment, ligands or sub-
strates, or complex formation. This structural variability has been observed
both by NMR methods in solution and X-ray studies in crystals. The
database for most theoretical studies, however, concentrates on an equilibri-
um or most stable conformation usually as observed in a crystal structure.
Our goal, currently, must be narrowed to determining this “sample conforma-
tion” which likely corresponds to one of the minimum energy states. Now
the question arises as to whether it is possible to determine this “protein
structure” or at least an approximation of it from information contained in
the structural and sequence databanks. It now appears that in some cases this
is possible and in others the data is insufficient. For example, highly homolo-
gous proteins likely share very similar structures, while on the other hand
large classes of proteins exist for which little or no structural information is
available such as membrane proteins and specialized structural proteins.

Thus, a more practical if less idealistic approach, will be to concentrate
efforts on the prediction of well understood structural features such as sec-
ondary structure, surface exposure, disulfide bond formation, etc. while
keeping sight of the final goal of predicting a complete tertiary structure.
This stairstep approach will not only provide valuable tools for molecular bi-
ologists, biochemists and protein engineers, but will also provide insight into
protein structure by forcing an overall critical view of the set of known pro-
tein structures. Figure 14 illustrates the overall scheme in this approach to
protein structure prediction.
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8. Conclusions

The studies discussed above clearly demonstrate the power of the artificial
neural network in extracting information from the protein structure database
and extrapolating to make predictions of protein structural features from se-
guence alone. It should also be clear that so far almost all studies have uti-
lized simple backpropagation networks. While these types of networks will
continue to be widely used, it may be that the next round of advances in pro-
tein structure will involve other types of networks such as associative memo-
ry, Kohonen, or Hebbian (see, e.g., Steeg's chapter in this volume). Already,
the promise of an associative memory approach has been observed. Neural
networks comprise a powerful set of tools which have reached the stage
where biochemists and structural biologists, and not just computer scientists,
can now attack the problems of their choice. The results of these studies will
depend on their ingenuity in problem formulation, network design and the in-
formational storage of the databases. We can look forward to a rapid growth
in the number of biologists using these methods.
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CHAPTER

S

Developing Hierarchical
Representations for Protein Structures:
An Incremental Approach

Xiru Zhang & David Waltz

1 Introduction

The protein folding problem has been attacked from many directions. One
set of approaches tries to find out correlations between short subsequences of
proteins and the structures they form, using empirical information from crystal-
lographic databases. Al research has repeatedly demonstrated the importance of
representation in making these kinds of inferences. In this chapter, we describe
an attempt to find a good representation for protein substructure. Our goal is to
represent protein structures in such a way that they can, on the hand, reflect the
enormous complexity and variety of different protein structures, and yet on the
other hand facilitate the identification of similar substructures across different
proteins. Our method for identifying a good representation for protein structure
is embodied in a program called GENERERhich automatically generates hi-
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erarchical structural representations for a protein of known structure.

Our approach proceeded in three stages. First, we selected a set of objective-
ly definable primitives that captured all local information in as compact a form
as possible. This step was accomplished by an unusual variation on principal
component analysis. Using these primitives to represent proteins of known
structure, we then looked for commonly co-occurring collections of primitives,
which we used to define substructure families by an analog of k-means
classification. Finally, we looked at how these families of structures are com-
bined in sequence along a protein chain by heuristically inferring finite state au-
tomata that use the structure families to recognize proteins of known structure.

We hope this paper can serve both the Al and molecular biology commu-
nities. We believe the techniques described here are generally useful in de-
signing representations for complex, ordered data in general, such as speech
processing or economic predictions. We also present the derived representa-
tion as a useful tool for analysis of protein structures in biological domains.
Our representation captures much of the important information about a pro-
tein conformation in a very compact form, which is more amenable to analy-
sis than many of the alternatives.

2 Why Worry About Representation of Protein Structures?

2.1 The Issue of Representation in Al

The importance of representation in problem solving has long been empha-
sized in Al; see, for example, [Brachman & Levesque, 1985]. Researchers in
the recent resurgence of connectionism have also started to realize its impor-
tance [e.g. Tesauro & Sejnowski, 1989]. A general lesson from Al is that
good representations should make the right things explicit and expose natural
constraints. In most of the traditional Al work, representations were designed
by users and hand-coded; see [Charniak & McDermott, 1985] and [Winston,
1984] for summary of such work. Recently, with the development of connec-
tionism, it has been shown that interesting representations can also be com-
puted “on the fly” from the input data. For example, [Hinton, 1988] devel-
oped internal representations for family relationships by training an
auto-association networks with a set of examples; [Ellman, 1989] trained a re-
current network on a corpus of sentences, and the network was able to ab-
stract noun/verb agreement. Researchers in computer vision have also been
concerned with computing concise representations of large amounts of visual
input data [Sanger, 1989; Saund, 1988]. Here, we attempt to bring some of
this experience to bear in developing representations of protein structure.

2.2 Existing Representations of Protein Structures

A common format of known protein structure data (such as in
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Brookhaven Protein Databank) gives lists of 3D coordinates for the atoms of
all of the amino acids in a protein. This is not a good representation for the
purpose of structure prediction because it is difficult to identify similar sub-
structures across different proteins and, consequently, difficult to carry out
generalization and abstraction.

Another way to represent the three-dimensional structures is to use a “dis-
tance matrix.” For a protein sequence of N residues, the corresponding dis-
tance matrix contains NxN entries, each representing the distance between
the Gy atoms of a pair of residues. Similar to the 3D-coordinate representa-
tion, a distance matrix carries almost all the information about the protein
structure (except the handedness of a helix), but still it is not obvious how to
build an abstraction hierarchy on top of it.

Another common way to represent the protein structure is to assign each
residue in the protein to one of several secondary structure classes. Sec-
ondary structure is a relatively coarse characterization of protein conforma-
tion, indicating basically whether the amino acid residues are packed closely
(a helix) or stretched into an extended straPadt{eet). Parts of proteins that
don’t match either category are generally labeled random caoil.

Research so far on protein structure prediction has mainly focused on pre-
dicting secondary structures, e.g. [Qian & Sejnowski, 1988; Levin, Robson
& Garnier, 1986; Chou & Fasman, 1974; Rooman & Wodak, 1988]. Howev-
er, given the 3D coordinates of all the residues in a protein, researchers differ
on how to assign secondary structures. There is broad agreement on what a
typical a helix or 3 sheet is, but a real protein structure is complicated, and
non-typical cases are commdrCoil is not really one class of local struc-
tures, but rather it includes many very different structures. Also, though it is
known that groups af helices and/o sheets often form higher level struc-
tures (often called super-secondary structures) [Richardson, 1981]—and
some researchers have even tried to predict particular super-secondary struc-
tures, such aBap [Taylor & Thornton, 1984]—there has not been a rigor-
ous, generally agreed way to identify different super-secondary structures in
the known proteins.

The Ramachandran plot [Schulz & Schirmer, 1979], ppogs. P angles
for all the residues in the set of protein structures used in this work. The
definition of these angles is shown in Figure 1, and a Ramachandran plot is
shown in Figure 2. We can see that the angles are not evenly distributed.
There are two dense regions; these corresponchilices and sheets, re-
spectively. We can also see clearly that this categorization does not capture
the richness and variety in protein structure.

Thus, a good representation for protein structures is in demand for the
purpose of structure prediction. It should produce a coherent description of
protein structures at the residue level, secondary structure level and super-
secondary structure level.
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e

Figure 1: The definition of phig) and psi () angles in a peptide chain. Most of the
bond angles and bond lengths in an amino acid are quite rigidly fixed, as is the pep-
tide bond that holds the amino acids together. There are two principal degrees of
freedom in the backbone of a peptide chain: These angles are defined arcamnd

bons by the indicated planes.

1800w
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Figure 2. A Ramachandran plot of thgversusy angles found in our dataset. No-
tice that although there are two main groups, there is significant variance within the
groups, and many points outside of them.

3 Method

Our goal is: given the 3-D coordinates of all the residues in a protein, gen-
erate a representation that can both reflect the enormously complexity of pro-
tein structures and facilitate the identification of similar substructures across
different proteins. This is exactly the kind of representation problem Al has
been concerned with. Ideally, it should be possible to describe a protein struc-
ture at several levels of abstraction, so we desire a hierarchical representation.

We have taken an incremental, bottom-up approach in developing repre-
sentations for protein structures. The first step is to find a set of lowest level



ZHANG & WALTZz 199

primitives with which we will build higher level structures. These primitives
must capture as much relevant information about the structure as possible,
and do so in a maximally compact way. In order to define the base level, we
apply a neural network-based techniques related to principal component
analysis to a dataset that contains the structural state of each residue in a
large number of proteins.

The second step is to group continuous stretches of structural states to
form local structures, roughly corresponding to what have been called sec-
ondary structures. We take the primitives we developed in step one, and use
them to find groups of similar residues, using a method related to k-means
classification; this provides a level of description roughly commensurate
with secondary structure. Finally, we assemble our groups of related local
structures to form higher level structures, which corresponds to super-sec-
ondary structures.

The advantages of this approach are (a) given a protein’s residue coordi-
nates, it can generate representations at all three levels discussed above auto-
matically—higher level representations are built upon lower level ones; (b)
these representations are grounded on a few objective, observable structural
parameters whose accuracy depends only on the accuracy of the crystal data,
rather than some subjective judgment; (c) it is straightforward to compute a
distance (similarity/difference) between any two structures in this representa-
tion; thus when categories are formed, it is possible to compute how different
one category is from another, or how far a particular instance is from the
mean for each category.

All of the inference was done on a subset of protein structures taken from
the Brookhaven Protein Databank. The subset consisted of 105 non-homolo-
gous protein structures; we call our subset the Protein Structure DataBase
(PSDB) in the following discussion.

3.1 Defining Primitives

3.1.1 Source dataAbstraction and generalization must be solidly
grounded. In this work, each residue in a protein in PSDB is associated with
a number of structural parameters. The three parameters used here are the di-
hedral anglesq, y)and water accessibilityd)3. Dihedral angles represent a
residue’s spatial orientation relative to its two immediate neighbors in the
protein sequence, and the water accessibility reflects whether the residue is
on the surface of or inside the protainis included here because it is gener-
ally believed that hydrophobic interaction plays an important role in protein
folding. Also, whether a residue is on the surface of or inside a protein is an
important source of structural informatidriThe residue state vector for
residue is defined as a 9-tuple:

SV =<1 Hi Yion @ @ H Wi Pirrs g
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That is, eacls\| depends on residiis ¢ , pandw parameters and on those
of its two nearest neighbors in the sequence. In this wotkkes a binary
value: either O (inside) or 1 (on surfaggandy are are rounded to the nearest
multiple of 20 degrees. Any pair of residues that have at least 3 identical angles
and no angles that differ by more than 20 degrees are forced to have identical
state vectors. Residue state vectors include all aspects of protein structure of
concern here; it is on this basis that the abstraction hierarchy is built.

All the state vectors for all of the residues in the entire PSDB were com-
puted, and 7159 distinct residue state vectors were found. This is a highly
nonrandom distribution; in theory, there are about 3.§m@ssible residue
state vectors. In addition, the histogram of occurrence of vectors is highly
skewed. The mean number of times a state vector occurs in the database is 3;
the most frequent one occurs 2027 times.

3.1.2 Computing Canonical Representations by an Auto-association
Network. Computing the state vector for each amino acid residue in a protein
structure provides a great deal of information about the structure, but in a less
than ideal form. The elements of the state vectors are highly dependent upon
each other, and it is unclear how to measure the distance between a pair of vec-
tors. The different dimensions of the vector have different value ranges and
value distributions; it is not clear how to weight their relative importance. A
canonical representation is needed to make useful information explicit and
strip away obscuring clutter. Our approach was to use an auto-associative
back-propagation network [McClelland & Rummelhart, 1986] to automatically
identify the intrinsic features implied in the state vectors.

It has been shown that, when properly designed, the hidden unit values of
an auto-association back-propagation network will identify the intrinsic fea-
tures of its inputs [Bourlard & Kamp, 1988; Saund, 1986]. A network trained
to reproduce values at its input units (within a given accuracy) using a smaller
number of hidden units has found a more compact encoding of the information
in the input unit values. This process is related to principal component analysis
(see section 5). In addition, something else is available for free: if the hidden
unit values for each residue state vector are used as its new representation, the
lower half of the trained network (inputhidden layers) can be used as an en-
coder, and the upper half (hiddeoutput layers) can be used as a decoder.

At this point, we needed a mapping of the state vectors to binary vec-
tors as required by the autoassociative network encoding process. Since
the accuracy ofp and angles is around 20° in PSDB, and these angles
range over [-180°, 180°], 18 units are used to encode one angle. The unit
activity then is smeared by a Gaussian function to the unit's neighbors,
thus similar angle values will have encodings near each other in Hamming
space. This encoding of real values is similar to that in [Saund, 1986].
Four units are used to encode eachalue. This is required so that the
backpropagation error signal farwill not be overwhelmed by that from
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the angles. The network and encoding are shown in Figure 3.

After the network is trained on all of the state vectors, it can be used as an
encoder and decoder, to translate from state vectors to the newly defined
primitives. Each residue state vector can be mapped to a 20-element vector
on [0,1] obtained from the 20 hidden units of the backpropagation network.
These are called residue feature vectors. But treating the production of these
vectors solely as a blackbox encoding is somewhat unsatisfying; what do the
values of the hidden units mean?

Each hidden unit captures certain features of the input vectors. One exam-
ple is a hidden unit which is sensitive primarily to the first, fourth and seventh
position of the input vectors, that is, to tesalues. For example, when the
input vectors have the form <0,?,?,0,?,2,0%®,®% output of the 6th hidden
unit is always close to 0. Another, more complex example demonstrates a dis-
tributed representation: when one hidden node is logc@\8) and another
hidden node is high (320.8) the input vectors are always of the form
<?,?2,?2,2,2,?,?,-120,160>, indicating the beginnind3afteet.

The hidden unit value distributions were plotted for all 7159 distinct residue
state vectors. The values of each of the hidden nodes over the range of training
examples took on one of three distinctive distributions: bimodal, multimodal
and normally distributed. Figure 4 shows one example from each kind.

We now have a method for translating objective information about the
amino acid residues in a protein structure into a set of independent, compati-
ble features. The next step is to assemble these examples of protein structure
into general classes, based on the feature vectors we have just defined. These
features provide the basis for an objective, general classification.

3.2 Finding Common Structures Using the Primitives

We claim that the hidden unit values represent intrinsic features of the net-
work inputs. The residue feature vector representation not only provides a good
representation for clustering, but also a way to measure the “distance” between
different clusters (how similar two classes are) and the “distance” between a
particular instance and the center of the cluster it belongs to (how typical it is to
the class). This distance measure allows us to apply a standard clustering algo-
rithm to find groups of similar structures from the examples that we have.

3.2.1 The Clustering Algorithm. The clustering on the 7159 20-element
residue feature vectors was carried by a clustering procedure implemented on
the Connection Machine CM-2 which is similar to K-means clustéting.
Briefly, it does the following:

1. Get arguments: n — the number of clusters required; m — the number
of iterations desired,;

2. Randomly select n vectors from the 7159 residue feature vectors as
“seeds” of the n clusters;

3. For each of the rest of the feature vectors, find the closest seed and put
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output units (120)

hidden units (20)

input units (120)

(A)
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(B)
Figure 3. The design of an auto-association backpropagation network for transform-
ing the residue state vectors to a canonical form. (A) The net contains 120 input
units, 20 hidden units, and 120 output units. After training, the hidden unit values
are taken as the canonical form. (B) The paramepensd @y are encoded as the
activities of the input/output units in the backpropagation network by quantizing the
angle to the nearest multiple of 20° and smearing the value over several neighbors.
w, which is binary, is encoded with four bits.

the vector into that cluster;

4. Compute the deviation in each cluster, then compute the average devia-
tion of all clusters;

5. Repeat m times from Step 2 to Step 4 above, and select as the result the
clustering that has the smallest average deviation.

3.2.2 Clustering ResultsTherefore, a classification of residue state vec-
tors based on the feature vectors should put similar structural states into the
same class. Using a method related to K-means clustering, the residue fea-
ture vectors were classified into clusters with small average deviations. We
looked for something around 20 classes at the beginning, and we found that
using 23 clusters produced the grouping with the smallest overall deviations.
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Figure 4. Three kinds of distributions of the hidden unit values. &y e 6th hid-

den unit). This kind of hidden units divides all the inputs into two classes. There are
six hidden units with this kind of distribution. (I).VThis kind of units classifies alll

the inputs into a few categories. There are six such units g(dight units have this
kind of normal distribution.

Figure 5 shows an example of a cluster. 50 residue state vectors from this
cluster are plotted bg/ angle. It is clear that they share strong family re-
semblance. The 23 residue structural classes found by the clustering proce-
dure are denoted by,CCo, ..., G3.
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180 T
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Figure 5. A cluster of residue state vectors made by a K-mean clustering procedure.
Three consecutiveg > pairs are three points on the —¢ plane joined by two
straight lines, each line starts withragoes through ar and ends with &. «'s are
not displayed here.

3.3 Correlation Between Residue State Classes And Amino Acids

It was found that there are strong amino acid preferences for each of the
23 classes computed above. That is, some amino acids appear very frequent-
ly (or rarely) in particular classes. Figure 6 shows the results(%fcarrela—
tion test between the 20 amino acids and the 23 classes in PSDB.

3.4. Identification of Common Substructures

In PSDB, strong correlations exist among structural clasge<4; ...

Co3 themselves, also. That is, in a protein, whgro€urs at one place,
some G tends to occur at another place. A number of class patterns were
identified based on this kind of correlation.

3.4.1 Labeling the Residues with Structural Classe&iven 3D protein
structure, we can compute a 20-element feature vector for each residue by
the trained lower half of the auto-association network in Figure 8. Then from
the feature vector, we can determine which of the 23 structural classes the
residue belongs to. Thus all the residues in the sequence can be labeled for
structural class membership. That is, the structure of the protein can be repre-
sented as (assuming there are n residues):

c2c3cAcoche .. ol
where éD{Cl, Co, ... O34 =23, ... .. (n-1). The first and the last
residues each have only one neighbor residue, and thus their structural class-
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Figure 6 The contingency table fg# tests on the correlations between amino acids
and classes. Each column corresponds to an amino acid, and each row corresponds
to a class. A mark means the corresponding amino acid and class are correlated
with a confidence level >95%

es cannot be computed.

3.4.2 Repetitive Patternsit is known that there are some repetitive local
structures in proteins, mainty helices and sheets. Pattern matching tech-
nigues using fixed pattern size do not work here becauselices and3
sheets occur with different lengths. Finite state automata (FSAS) can easily
recognize sequences of symbols of variable length. A set of heuristics was
used to inductively generate FSA's from instances in PSDB, and these au-
tomata were then used to identify all the similar structures. The heuristics
used were:

M GCi..GN,M) - GF

2G..G G..GGG..G.. (N, M)  (Ci*Cj*) *
Heuristic (1) says that if in a protein sequence, a structural classcars
continuously along the sequence for at least N residues, and this occurs in M
different protein sequences, then generate regular expresé’lmﬁ gener-
al representation for such continuous, repetitive local strucfurksiristic
(2) is similar to (1), except that it deals with two interleaving structural class-

es Gand G.
Four regular expressions (representing the FSA's) were generated from
protein sequences labeled with 23 classeg {©, ... ... G3k

(1) RE = Cp1*
() RE;=C14*
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(3) RE3=(Cy*Co1") *

(4) RE4= (C17°Cp3") ™
The average residue state vector values for these classes are:
W @ Y W @ Yy w3 3 Y3
Coq: <03 54 -32 03 67 -3¢ 00 -7 -36>
Ci: <03 61 -26 04 -46 -37 10 -65 -26>
C1g <02 -92 104 00 -104 110 00 -88 93>
Cq7: <04 -93 107 03 -81 108 1.0 -88 116>
Cpz <03 -73 70 10 -89 113 00 -82 96>

These repetitive patterns corresponditbelices (R and RE) and 3
sheets (RE and REy). The main difference between RBnd RE, and be-
tween RE and RE is whether the local structure is on the surface of or in-
side proteins.

3.4.3 Non-repetitive Structural Class PatternsAfter the repetitive local
structures were identified, structural classes that occur often at the beginning
or the end of RE, REy, RE3 and RE, and non-repetitive class patterns that
happen frequently in PSDB were found. Some interesting phenomena were
observed. For example, class pattefC; occurs often at the beginning of
RE3 (61 times in PSDB), but never occurs at the end of REile class pat-
tern G3C4 occurs 79 times at the end of RBbut never at the beginning.

This suggests that classes in these two sets are not just variations of the class-
es inside RE, but rather they have specific preference for places they occur.
Also about 100 non-repetitive class patterns (with lezgtt) were found

that occur 20 times or more in PSDB.

Table 3 shows how marty helices an@ sheets (identified by RERE,

REs, RE4) have common sequences proceeding them (heads) or sequences
that follow them (tails) in PSDB. More than 75% of the helices and sheets
have both head and tail ((413-89-11)/413 = 75.9%, (695-137-21)/695 =
77.3%). Only 3% of the helices and sheets have neither head and tail (11/413
= 2.7%, 21/695 = 3% ). Thus, the occurrences of the heads and the tails sug-
gests strongly the existence of the corresponding secondary structures.

Finally, groups of REs are found that are close to each other in space and
less than 15 residues apart along the sequence. For exampleRRE=.RE
(two sheets with a helix in between) occurs 18 times in PSDB. This is an ex-
ample of what has been called super-secondary structure.

4 Summary and Discussion

4.1 Protein Structures

The success of protein structure prediction research depends on whether
“rules” can be found that govern the correspondence between amino acid se-
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Head and Tail of Helices and Sheets

RE’s Total LackOne LackTwo LackHead LackTail
RE; & RE3 413 89 11 54 57
RE» & RE4 695 137 21 86 93

Table 3: The number of occurrences of the ““heads” and the "tails” of the secondary
structures identified by RERE, RE3, RE,.

guences and structures they form. We argue that representation plays an impor-
tant role here—good representation exposes natural constraints.

In this paper, starting with a few primitive structural features about residues
and some generalization techniques, we have developed representations for
protein structures at several levels. As shown elsewhere [Zhang, 1990], we ob-
tained a much higher secondary structure prediction accuracy with this repre-
sentation than other representations; these representations greatly facilitate the
prediction of protein structures. The correlations among structures at different
levels revealed by these representations impose constraints about which amino
acids will form what structures and where (in relation to other structures). This
suggests that instead of predicting the state of each residue as an isolated indi-
vidual (which is the case in most secondary structure prediction work today),
the structural states of all the residues in a protein should be treated as a mutu-
ally related whole. The structure hierarchy described in this chapter is one way
that these relations can be found and represented.

The representation here also has its limitations. Right now it only covers
certain super-secondary structures—those that are close to one another in
space and not very far away from each other along the sequence. It cannot
account for all the global interactions.

4.2 General

In this paper, several computational tools have been successfully applied
to the problem:

Feature Extraction. This was done by an auto-association network and
proved to be a very useful tool for the purpose. Auto-association networks
have been shown to be similar to principal component analysis [Bourlard, et
al., 1988]. However, with non-linear input/output units, their dynamics are
not yet fully understood. A principal component analysis method was ap-
plied to the same problem but did not produce as good a result in terms of
forming meaningful clusters of protein local structures. One explanation for
this is that the original dimensions need to be properly weighted in the prin-
cipal component analysis to be successful.

Primitive Identification In this chapter, clustering of the original data
based on their canonical features gave rise to meaningful categories. This gives
an interesting example about the relationship between symbolic and non-sym-
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bolic reasoning: the original data ;- angles ando's — are clearly non-
symbolic, and yet the labels for the final structural classes are symbolic. These
symbols (which correspond to the structural classes) emerged from the compu-
tation on non-symbolic data. They facilitate reasoning by identifying similar
things and omitting details (abstraction!). They differ from the symbols in clas-
sic Al in that they are “backed up” by non-symbolic (numeric) information, so
they can be compared, combined or broken into smaller pieces.

Correlation Among Primitives. Finite state automata and pattern match-
ing techniques have been used to determine correlations among representa-
tion primitives. The sequential nature of the input data was explored to make
such techniques applicable.

The above techniques could be applied to other representations of protein
structures such as the distance matrix, or to problems in other domains
(maybe in slightly different form), such as speech recognition and text pro-
cessing. It is hoped that the lessons learned in this work will shed light on re-
search in these domains as well.
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Notes

1. It stands for “GENErate REPresentations.”

2.When comparing the assignment of secondary structures by crystallogra-
phers and the one by Kabsch and Sander [Kabsch, 1983] (which is com-
monly used by structure predictors) for some protein sequences in
Brookhaven Protein Databank, we found that they classify as many as
20% of the residues differently.

3. These parameters were computed from PSBD atomic coordinates by Kab-
sch and Sander's program DSSP.[Kabsch, 1983]

4. w is based on the number of water molecules bound to each residue. The
w value computed by DSSP is normalized to be in [0, 1].

5. Where ? means any value.
6. Anand Bodapati at Thinking Machines Corp. kindly provided the initial
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code. We modified it to suit our need.

7. The regular expression also specifies a FSA that can recognize all the se-
guences that can be represented by this expression.
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CHAPTER

6

Integrating Al with
Sequence Analysis

Richard Lathrop, Teresa Webster, Randall Smith,
Patrick Winston & Temple Smith

1 Introduction

This chapter will discuss one example of how Al techniques are being in-
tegrated with, and extending, existing molecular biology sequence analysis
methods. Al ideas of complex representations, pattern recognition, search,
and machine learning have been applied to the task of inferring and recogniz-
ing structural patterns associated with molecular function. We wish to con-
struct such patterns, and to recognize them in unknown molecules, based on
information inferred solely from protein primary (amino acid) sequences.
Besides its intrinsic interest as a difficult machine learning task of induction
from complex and noisy data, this is of interest in the empirical domain for:

« suggesting targets for genetic manipulation in known molecules;

« suggesting functional identification and confirmatory tests in unknown or
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newly discovered molecules; and

« increasing general scientific knowledge by suggesting essential structural
elements encoding molecular function.

The work described in this chapter is part of a larger ongoing effort to as-
sociate symbolic structural patterns with functionally defined classes of pro-
teins. The basic question that we seek to address is: How can we recognize
and relate protein function and structure? In the cases of interest to us, one
typically has a defining set of sequences (instances) exhibiting the structure
or function of interest, plus some biological or chemical experimental data
which is believed to be relevant. The task is to inductively construct the pat-
tern(s) which detect regularities implicit in the set of defining sequences, and
which discriminate them from all other sequences. In machine learning
terms, this is a task of concept acquisition from positive and negative exam-
ples. Positive examples are sequences which exhibit the structure or function
under study, and negative examples are sequences which do not.

A pattern-based model is an excellent starting point for a feedback loop
between experimental testing of the model and model refinement. For exam-
ple, the pattern-based modeling of the classical mononucleotide binding fold
(MBF) in tRNA synthetases [Webstet al 1987] and the simian virus 40
(SV40) and polyomavirus large tumor (large-T) antigens [Braeékegl.

1987] led to site-directed mutagenesis in SV40 at the site suggested by the
pattern match. The experimental manipulation [Bragfegl 1987] verified

the MBF location there. Continued theoretical study [Figgeal 1988] led

to a common pattern in the SV40 large-T, E1A, andoncoproteins (can-
cer-related proteins), all of which co-transform cells (induce cancer-like
growth) withras. Experimental work [Grassest al. 1988, DeCapriet al

1988, 1989] found that phosphorylation of the region matched by the pattern
in SV40 large-T was associated with binding the retinoblastoma (Rb) protein
(a protein that apparently suppresses cancer-like cell division, unless it is
bound and inactivated). The region matched by the same pattern in E1A
[Figge et al 1988] was experimentally substituted for the region matched in
SV40 large-T, and the resulting domain exchange was found experimentally
to bind Rb [Moran 1988]. Experimental work confirmed that E1A also binds
Rb [Whyteet al 1988, Lillie and Green 1989]. A generalization of the pat-
tern matched two additional proteins, E7 and CDC25, suggesting their Rb
binding [Figge and Smith 1988]. Subsequent experimental work [Satrey

al. 1988, Goldsborought al 1989] demonstrated that the degree of pattern
match (its differential similarity score) in papillomavirus (the virus responsi-
ble for warts) E7 was linked to the degree of biological activity. As predict-
ed, further experimental work [Munget al 1989, Dysoret al. 1989, 1990]
verified that E7 binds Rb. Theoretical attempts to further generalize the pat-
tern led to the discovery of a new pattern [Zhal 1990] for transcriptional
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activators (a large class of proteins that bind to DNA and activate genetic
transcription). In experimental work continuing the Rb binding studies,
Breeseet al [1991] constructed a number of small (14 residue) peptides con-
taining the sequence regions matched by the pattern, demonstrated that they
bound Rb, and verified the secondary structure part of the pattern with circu-
lar dichroism measurements. Further theoretical work led to the proposal of a
full three-dimensional model [Figget al, submitted] of the binding site in
proteins that bind Rb. This prediction now awaits experimental test.

The basis for the theoretical approach is that common functions often cor-
relate with common protein structures, domain folding types, supersecondary
structures and/or a few invariant or equivalent amino acids. This is true even
for proteins with very different primary sequences. Biologically, a mutation
that distorts a functionally important structure tends to produce an unviable
organism and so tends not to propagate. Other mutations often have little ef-
fect and so are passed to offspring. Consequently, functionally important
structure tends to be conserved, and functionally irrelevant structure tends to
drift. If the functionally related sequences exhibit sufficient evolutionary di-
versity, a conserved functional “signal” may be distinguishable above the
“noise” of mutational drift.

Unfortunately, although similar protein sequences generally indicate simi-
lar folded conformations and functions, the converse does not hold
[Creighton 1983]. There are proteins, e.g., the nucleotide binding proteins
[Rossmaret al 1974; Birktoft and Banaszak 1984], in which the secondary
and tertiary structure encoding a common function is conserved while prima-
ry sequence similarity is almost non-existent. Methods which detect similari-
ties solely at the primary sequence level have difficulty addressing functional
associations in such sequences. A number of features, often only implicit in
the protein’s primary sequence of amino acids, are important in determining
structure and function.

We attempt to identify patterns which are characteristic of a structural
motif assumed to carry out some particular function. Our approach involves
searching for a pattern which is shared by a defining set of functionally relat-
ed proteins (positive instances of the function), and which does not appear in
other proteins (negative instances, comprising the control set). The features
we employ can be predicted or inferred (even if only statistically) from the
primary structure. An initial “complex pattern” of a structural motif poten-
tially involved in carrying out the common function is iteratively refined in
order to maximize its discrimination between the positive and negative in-
stances. The resulting pattern is a preliminary model for the relationship be-
tween a protein’s structure and function, grounded in its amino acid se-
guence, which includes an identification of a functional site(s) as well as
structural elements characteristic of that function. In the machine learning lit-
erature, this is sometimes referred to as the “concept” associated with the
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positive set. Regions of protein sequences matched by the pattern may sug-
gest potential sites for experimental work. Because the inference is grounded
in the primary sequence, the model is also suitable for hypothesizing the
function in unknown proteins for which the primary sequence may be the
only information available.

We have decomposed our pattern-based approach into a series of sub-
problems, each addressing a small part of the puzzle:

(1) ARIADNE [Lathropet al 1987] approaches our basic question by
searching an annotated protein sequence for a complex pattern describing a
structural motif assumed to be correlated with function. It employs hierarchi-
cal object-oriented representations of both pattern and protein, graph-based
sequence and annotation representations, procedural attachment of user-
defined match functions, and a complex user-extensible structural pattern
language that supports pattern element weights, gaps, annotations and
weights attached to the annotations, and so forth.

(2) The ability to match an unknown protein sequence against a complex
pattern introduces the question of: Where does the complex pattern come
from? ARIEL [Lathrop 1990, Lathrogt al. 1990, 1992] functions as an “In-
duction Assistant” for the biologist engaged in constructing such patterns. It
applies massively parallel symbolic induction to the task of refining an initial
seed pattern to increase the discrimination between positive and negative
instances. Machine learning heuristics for the main pattern language compo-
nents have been implemented on a massively parallel computer. These ma-
nipulate class membership terms, interval relationships, pattern element
weights, and an overall match threshold. The time complexity of these ma-
chine learning heuristics techniques is essentially constant, and their space
complexity essentially linear, in the number of instances in the training set.

(3) But now the further question arises: Where does the seed pattern come
from in the first place? PIMA [Smith and Smith 1990, 1992] inductively con-
structs primary sequence patterns common to a functionally-related family of
proteins, using a modified dynamic programming alignment method. These
patterns can be more diagnostic for functional family membership than using
any member of the family as a probe sequence.

The chapter begins with a background section, following which we exam-
ine each of these three areas in detail. No discussion of pattern-based se-
guence analysis is complete without some mention of statistical reliability,
and we close the chapter with a brief discussion of this important topic.

2 Background

One of the fundamental problems in molecular biology is that of relating a
protein’s structure and function to its amino acid sequence. Kolata [1986]
terms this difficult problem “cracking the second half of the genetic code”.
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Among the problems involved are: relating the protein primary sequence to
higher structural levels of protein organization (including secondary, super-
secondary, domain, tertiary and occasionally multi-protein quaternary struc-
tural levels); identifying the structural elements which are the determinates
of a protein function (structural elements here refers broadly to all levels of
protein structure); describing the organizational constraints (or patterns) that
hold between such elements; and inferring the function and structure in new
or unknown proteins.

Before 1959 it was generally assumed that every unique protein sequence
would produce a three-dimensional structure radically different from every
other protein structure. The subsequent accumulation of X-ray determined
protein structures has shown that proteins tend to have a limited number of
three-dimensional arrangements. Also, proteins with similar functions often
have similar structure. It is this regularity of protein structure that makes it
possible to investigate the relationships between sequence, encoded struc-
ture, and biological function.

The problem is, of course, difficult and complex. Approaches fall into
four broad categories, two experimental and two analytical:

(1) Analysis of physical data generated from proteins, such as X-ray and
nuclear magnetic resonance (NMR) data. The most rigorous way to connect
primary sequence to function is through X-ray analysis of co-crystal struc-
tures, which provide a three-dimensional picture of the protein molecule
bound to its substrate. Unfortunately the availability of such data is quite
limited. For most proteins, crystals suitable for X-ray analysis prove difficult
to obtain, and the experimental and analytical process may require years to
determine a single structure (where possible at all). NMR is currently possi-
ble only for small proteins, due to resolution limitations inherent in the ex-
perimental techniques.

(2) Genetic and crosslinking experimental studies which highlight poten-
tially important functional regions. Functional change associated with amino
acid substitutions, deletions and insertions can correlate amino acid positions
or regions with functional determinates. The crosslinking of substrates to
nearby amino acids supports their association with binding sites. These are
often the result of sophisticated laboratory techniques, and the data is usually
difficult and laborious to obtain.

(3) Prediction of protein three-dimensional structure and/or function di-
rectly from the primary sequence. There are three major approaches. The
first (3a) is to attempt to predict three-dimensional backbone conformation
by attempting to fold the protein sequence directly from first principles.
These methods generally employ empirical potential energy functions. They
are very computationally intensive and currently rather unsuccessful, al-
though an active area of research with hope for the future. The second ap-
proach (3b) is to predict structure based on similarity to a known three-di-
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mensional structure. This approach is related to the first in using empirical
potential energy functions, but uses them to refine an initial fit obtained from
a known structure rather than to fold the chatininitio. Success depends on

the degree of similarity between the known and modeled structures. If the
similarity is sufficiently great this method can give very good results, but
many sequences fail to exhibit appreciable primary similarity to any known
structure. The third (3c) comprises a wide variety of secondary and tertiary
structure prediction schemes that attempt to use empirical or statistical rules
of one form or another.

(4) Comparative analysis of primary sequences (or of physical values in-
ferred from the primary sequences). There are two related approaches. The
first (4a) is to compare primary sequences directly to each other. If
significant similarity occurs between a protein of interest (the query) and a
protein of known structure or function, one can reason by analogy that they
share similar structure and function. If the similarity is great enough this in-
ference is almost always correct. The second (4b) is to compare primary se-
guences to a structural or functional pattern. If a match to a known pattern
occurs one can infer that the protein of interest shares the structure or func-
tion associated with the pattern. While a pattern-based approach has often
been shown to be a more sensitive detector than direct primary sequence
similarity to any single query sequence, the validity of the inference depends
on the sensitivity and specificity of the pattern.

Others might reasonably classify some approaches differently, as many
overlap or share characteristics. Some of the references below touch several
of these areas and have been arbitrarily categorized. In any case our intent is
not a rigorous ontological division of the field, but only a pedagogical aid to
structure the presentation.

Approach (1) and (2) above rely on experimental methods that are outside
the scope of this chapter, even though computational methods are often cru-
cial in the interpretation of the experimental data. For example, the interpre-
tation of X-ray crystal diffraction data to yield the three-dimensional place-
ment of atoms is extremely computationally intensive. Hayes-Bo#il
[1986] have applied Al constraint-based techniques to the problem of infer-
ring protein structure from NMR experimental data; Glasgudval. and Ed-
wards,et al.in this volume also describe Al systems that address these ap-
proaches.

Approaches (3) and (4) rely almost completely on the development and
implementation of analytical and computational methods. Most of the meth-
ods that have been developed for approach (3) apply to attempts to model the
three-dimensional placement of atoms in the protein, either numerically or
by assigning a qualitative structural class to the sequence or subsequences.
While quantum mechanics provides a solution in principle to this problem, it
is impractical for molecules such as proteins which may contain many thou-
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sands of atoms. Consequently a variety of clever innovations have been used
instead. Most of these are beyond the scope of this chapter and its focus on
sequence analysis, although some of the methods employed for (3c) use pat-
tern-based or machine learning techniques. Approach (3c) is described else-
where in the present volume, e.g. in the chapters of Holbebait, and
Hunter. Zhanget al [1992] applied parallel processing machine learning
methods to find regularities in three-dimensional protein structure. A few ex-
amples of related techniques include Behal [1990], Bowieet al [1991],

Clark et al. [1990], Coheret al [1989], Fasman [1989], Holbroadt al.

[1990], Holley and Karplus [1989], King and Sternberg [1990], Maclin and
Shavlik [1992], Majoret al [1991], McGregoret al [1989], Muskalet al

[1990], Noordewieeet al. [1990], Ponder and Richards [1987], Qian and Se-
jnowski [1988], Rawling®t al [1985], Thorntoret al [1991], and Toweléet

al. [1990].

Comparative sequence analysis, approach (4), will be the focus of the re-
mainder of the chapter. These methods proceed by comparing a sequence ei-
ther to another sequence or to a pattern. Although this chapter is primarily di-
rected towards protein sequences, many of the computational techniques are
equally applicable to both protein sequences (strings from an alphabet of
twenty letters) and DNA sequences (strings from an alphabet of four letters).

2.1 Comparing Primary Sequences to Each Other

By far the most common approach to relating a protein’'s amino acid se-
guence to its structure and function is by comparing its sequence to one or
more known protein sequences [Wilbur and Lipman 1983; Pearson and Lip-
man 1988; Altschuét al. 1990]. Many important advances have been made
by these methods, for example, when the sequence of an oncogene (cancer
related gene) was found to be similar to sequences of human growth hor-
mones [Doolittleet al, 1983]. The highly similar sequences clearly related
cancerous growth to defective normal cell growth.

The basic idea of most sequence comparison algorithms is to obtain a
measure of the similarity (or distance) between two sequences. This usually
reflects the minimum number of changes (“edit distance”) required to con-
vert one sequence into the other [Sellers 1974, Smith and Waterman
1981a,b]. For biological sequences, there are basically three types of muta-
tion events commonly counted: point mutations, deletions, and insertions.
These are “nature’s typos:” NATORE, NTURE, and NATEURE. An align-
ment of such sequences is defined as an ordered sequence of n-tuples, each
n-tuple containing one element, or null, from each sequence. For example:

NAT-URE
NAT-ORE
N-T-URE
NATEURE
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is one alignment of these sequences. Alignments are usually constructed so as
to maximize the measure of similarity (or minimize distance) between the se-
guences. For a few examples of related techniques, see Bacon and Anderson
[1986], Barton [1990], Barton and Sternberg [1987a,b], Brudtagl [1990],

Corpet [1988], Felsenstein [1988], Feng and Doolittle [1987], Fischel-Ghod-
sianet al [1990], Hein [1990], Henneke [1989], Hunttral [1992], Sankoff

and Kruskal [1983], Schulest al [1991] Taylor [1988a], Vingron and Argos
[1989], Waterman [1984, 1986]. Parallel processing versions have been im-
plemented by Collinst al [1988] and Landeet al [1988].

2.2 Comparing Primary Sequences to Patterns

Inspecting the four aligned sequences above, one might notice that their
observed variability could be concisely represented by “NgTgvRE”, if we as-
sume that “g” (gap) matches zero or one characters of any type, “v’ matches
any one vowel, and each upper-case letter matches exactly itself. While di-
rect sequence comparison often yields important information, in some cases
it may be more desirable to derive a pattern representing the structure or
function under study and then compare sequences to that pattern. This is be-
cause a pattern is often a more sensitive detector of the regularity under
study than any single sequence, due to the “noise” in the rest of the sequence.
Further, elements of the pattern often highlight biologically important as-
pects of the protein.

What is required to compare a pattern to a protein? We must: (1) represent
the protein and the pattern to the computer; (2) have an algorithm which per-
forms the comparison; and (3) somehow obtain a pattern to compare. These
are all closely related, of course, but we shall adopt this division as an orga-
nizing theme.

For pattern matching purposes, the simplest protein representation is a lin-
ear sequence denoting its amino acids. This basic amino acid sequence is
sometimes annotated with additional information, representing additional
features (known or inferred) of the sequence. The degree of annotation possi-
ble is a function of the level of our knowledge.

At a minimum, most useful patterns must be able to represent protein posi-
tions in which any of several alternate amino acids are acceptable (amino acid
physico-chemical classes), as well as regions in which a variable number of
amino acids may occur (variable-length gaps). Beyond this, the ability to tol-
erate a certain amount of mismatch to a pattern lends robustness in the face of
mutational diversity. Weights or frequencies are often used to specify greater
tolerance in some positions than in others. There is a great deal of effort in the
field aimed at extending the power, flexibility, and expressive power of pat-
terns beyond these simple desiderata. Protein sequences fold up to form com-
plex dynamic mechanisms, in which mutations, interactions and dependencies
abound. Representations which capture in a manageable way the complexity
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inherent in Nature may expose some of her regularities more clearly.

The simplest pattern match algorithm possible is an exact match to a liter-
al string. This fails to handle most of the naturally occurring variability in bi-
ological sequences. The necessary robustness for inexact matches can often
be supplied by the pattern match algorithm instead of the pattern itself. For
example, regular expression-based patterns (which specify an exact match in
the usual finite state machine construction) can be made more robust by a
match algorithm which allows some mis-matches before discarding a poten-
tial match.

In some cases the pattern to compare may come directly from biochemical
investigation, known three-dimensional structures, analysis of genetic or mu-
tational data, knowledge of similar sequences or patterns, and other sources.
Such information is not often available in sufficient quantity and quality to
form the sole basis for pattern construction, although it may be adequate to
provide initial guesses or seed patterns. Consequently, inductive construction
of the pattern is often necessary. The simplest pattern discovery method is to
align the sequences maximizing the number of matching amino acids, then
construct a consensus sequence from the conserved regions by assigning
each consecutive pattern position to consecutive aligned sequence positions.
The pattern above, “NgTgvRE", was constructed in this way. This simple
method may fail to find patterns in defining sets having widely diverse pri-
mary sequences, and consequently more sophisticated approaches are often
desirable. Pattern induction techniques fall broadly into two classes, depend-
ing on whether a sequence alignment is performed to bring sequence posi-
tions into explicit correspondence with each other before pattern discovery is
attempted, or not. There is an intermediate set of techniques for which se-
guence alignment and pattern discovery proceed in alternating cycles. A
number of the approaches are “semi-automatic” in actual domain practice,
the domain expert applying domain knowledge by direct manual intervention
where deemed appropriate or desirable. Any existing experimental data may
be used, either as a source of additional clues in the pattern construction pro-
cess, or to substantiate the pattern once discovered (for example, by verify-
ing that the pattern elements and the positions of matches within the se-
guences reflect experimentally known associations between sequence
position and function).

Hierarchical pattern-matching was pioneered by Abarbanel [1985] and
Cohenet al [1983, 1986], and these researchers originated the term “com-
plex pattern”. Cohemt al [1991a,b] added a meta-level of control knowl-
edge. Taylor and Thornton [1983] originated the use of secondary structure
predictions and hydropathy (hydrophobicity) in super-secondary structure
patterns. An explicit machine learning approach to pattern discovery in pro-
tein sequences was developed by Gascuel and Danchin [1986]. Automatic
evaluation of functional patterns was described by Geigal [1991].
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Hodgman [1986] describes a pattern library. The chapter by Searls in the pre-
sent volume discusses complex grammars for biosequences. A few related
examples include Abarbanet al [1984] Barton [1990], Barton and Stern-
berg [1990], Blundelket al [1987], Bork and Grunwald [1990], Boswell
[1988], Cockwell and Giles [1989], Gribskev al [1987, 1988], Hertet al

[1990], Lawrence and Reilly [1990], Myers and Miller [1989], Owenhal.

[1988], Patthy [1987, 1988], Sibbald and Argos [1990a], Saetitil. [1990],

Smith and Smith [1989], Staden [1989], Stormo [1990], Stormo and Hartzell
[1989], Taylor [1986, 1988b], Thornton and Gardner [1989], Waterman and
Jones [1990], and Webstetral [1989].

Comparative sequence analysis has been an active and fruitful area for the
application of computation to biological problems, and a number of very clever
techniques have been devised. The discussion and references above provide
only an initial window. Next we turn our attention to examining our approach
to integrating Al techniques with existing domain methods for sequence analy-
sis. The approach uses three systems: ARIADNE, which matches a complex
pattern to an annotated protein sequence; ARIEL, which inductively constructs
these complex patterns by refining one or more “seed” patterns; and PIMA,
which constructs seed patterns given a family of proteins.

3 ARIADNE1

ARIADNE was developed to explore representation and match algorithm
issues. Our motivation was to allow a more complex representation of pro-
tein sequences, in order make richer information sources explicitly available;
and correspondingly, to provide a more complex pattern language in which
to express similarities among proteins at a higher level than primary se-
guence. Because the “best” indicators of protein structure are surely not yet
known, both protein and pattern representations had to be easily extensible.
In turn, the matching algorithm had to be flexible enough to support un-
known future extensions to the representations; extensible itself in order to
easily support novel match behavior; and also efficient enough to quickly
match complex patterns to large sets of protein sequences. The resulting sys-
tem facilitates direct expression and manipulation of higher-order structures.
It identifies the optimal match between a given complex pattern and protein
sequences annotated with various inferred features, by abstracting intermedi-
ate levels of structural organization. Inference is grounded solely in knowl-
edge derivable from the primary sequence.

A biologist first hypothesizes a possible protein structure, based on bio-
chemical knowledge (for example, Figure 1a). This is used to form a pattern
describing the hypothesized common features, as a sequence of primary se-
guence elements and their annotations (for example, Figure 1b). It is often
convenient to be able to describe the pattern in terms of hierarchical group-
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Figure 1 (a) Schematic of the Mononucleotide Binding Fold-like Structure. Beta-
sheet strands are represented by arrows, alpha-helices by cylinders, and beta-turns
by angular bends. (b) The Mononucleotide Binding Fold Unfolded into a Linear Se-
guence. The first beta-strand/beta-turn/alpha-helix/beta-strand sequence will form
the basis of the structural descriptor below. Key amino acids have been labeled.. (c)
The Unfolded Mononucleotide Binding Fold as Hierarchical Groupings. It is often
convenient to be able to describe a structure in terms of intermediate levels. This fig-
ure appeared as figure 3 of Lathrop et al. (1987).

ings of sub-patterns (for example, Figure 1c). ARIADNE receives as input
these pattern(s), and also one or more annotated protein primary sequences.
ARIADNE's biological structure knowledge is encoded in a number of
pattern/action inference rules: an antecedent (pattern) that describes a rela-
tionship between structural elements, and a consequent (action) that executes
in a context with variables bound to reflect the current state of the match (the
consequent usually, but not always, hypothesizes the presence of a higher-
order structure). Patterns are represented as a hierarchy of sub-patterns, each
level an inference based on sub-patterns at lower levels. The target protein is
searched for regions which are plausibly similar to the rule antecedent. A dif-
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Nononucleotide-binding-fold
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(b)

GKTFILHDGPPYANGSIHIGHSVNKILKDIIVKSKGLSGYDSPYVPGUDCHG

@
Figure 2 (a) E. colilsoleucyl-tRNA synthetase (residues 48-99 of 939 residues). Pri-
mary sequence input to ARIADNE. Eb)colilsoleucyl-tRNA synthetase (residues
48-99 of 939 residues). Secondary structure predictions (Chou and Fasman, 1978;
Ralph et al. 1987) input to ARIADNE. () colilsoleucyl-tRNA synthetase (residues
48-99 of 939 residues). Intermediate predictions constructed by ARIADNE. (d)
coli Isoleucyl-tRNA synthetase (residues 48-99 of 939 residues). Intermediate predic-
tions constructed by ARIADNE. (&) colilsoleucyl-tRNA synthetase (residues 48-
99 of 939 residues). Final prediction constructed by ARIADNE. No other occur-
rences of Mononucleotide-Binding-Fold are predicted in this sequence. This figure
appeared as figure 4 of Lathrop et al. (1987).
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Enzyme | Source Deser iptor
112
5
ret | E. coli FRILUTCHL P ANE} T HCEHMLERT GAOVHYRY DRMRGFEVNFICAIDAHG [
5. cerevisiae lHL!@WPHLGNHKG ST + -
B. stearothernophilus :sulm@sm .o
Tle | E. coli DGPPIHIGHKGLSGVDSHDCHG .o
5. cerewisiae TGTPKGHHUERRFEHDTHG o
Gln | E. coli FPP@LNFGIHNMKGNEH[EFDD - -
5. cerevisiae ZE@PPEL@FGYHMHN@FDD - -
Trp | B. stearothermophilus SGIITIGN\‘HD@QHHITUHDDPH o
£ ot s e e T .
5. cerevisise R TUEEIDTER LY 41 M DRG0P - -
Ala | E. coli I@HGPEDFD [EIF*PHE o
E. coli 4%MHESGGD\MHMEDWK .o
Gly | E. ooli beta-subunit ﬁIESk@IRLHDH DR +o
fiesn | 5. cerevisiae RLFRHRUHNTRDD .
Blu | E. cod P APEPTES [ ERET AL TSHLFRRHGGEETCA - -

Figure 3. Proposed alignment of aminoacyl-tRNA synthetase sequences with the first
beta-alpha-beta fold of a mononucleotide bindinglike structure. The regions predict-
ed to fold into beta-A, the turn, alpha-B, and beta-B are enclosed in the first, second,
third and fourth solid box,respectively, of each sequence. Sequences which match
the composite descriptor and/or descriptor 1 are indicated with a “+” to the right of

the figure. Secondary structure assignments foBtretearothermophilugyr-tRNA
synthetase anH. coliMet-tRNA synthetase X-ray structures are indi